Mathematics Applications to Detect Fetal Syndromes

  • Faten Hameed Sabty Scientific Research Commission, Baghdad, Iraq
Keywords: fetal syndromes, monogenic disorders, mathematical modeling, deep learning, bayesian neural networks, uncertainty quantification, non-linear classification

Abstract

This research addresses the detection of fetal syndromes as a high-dimensional, non-linear binary classification problem, we mathematically formulate and empirically evaluate three classes of models: probabilistic classifiers based on Bayesian inference with multivariate Gaussian assumptions, geometric classifiers such as Support Vector Machines with non-linear kernels, and deep learning models based on multi-layer neural networks, the study's central hypothesis posits that the complex, synergistic interplay between sonographic and biochemical markers can only be captured by models with high representational capacity. Using a large clinical dataset, we demonstrate the hierarchical superiority of a Deep Neural Network (DNN), which achieved a test set Area Under the Curve (AUC) of 0.982 and a Matthews Correlation Coefficient (MCC) of 0.869, through the application of SHapley Additive exPlanations (SHAP), we deconstruct the model to reveal that higher-order interaction effects account for approximately 20% of its predictive power. Furthermore, by employing a Bayesian Neural Network (BNN), we introduce a framework for quantifying predictive uncertainty, decomposing it into its aleatoric and epistemic components, the results show that the BNN can reliably flag atypical patient profiles by exhibiting high epistemic uncertainty, a critical feature for clinical safety, this work concludes that the problem's underlying geometry is that of complex, intertwined manifolds, and that models capable of learning these structures while quantifying their own uncertainty represent the next frontier in prenatal diagnostics.

References

M. C. V. Schie, S. Jainandunsing, J. E. R. Lennep, Monogenetic disorders of the cholesterol metabolism and premature cardiovascular disease, Eur. J. Pharmacol., 816 (2017), 146–153. https://doi.org/10.1016/j.ejphar.2017.09.046

J. Zhou, Q. Lu, R. Xu, L. Gui, H. Wang, EL_LSTM: prediction of DNA-binding residue from protein sequence by combining long short-term memory and ensemble learning, IEEE/ACM Trans. Comput. Biol. Bioinf., 17 (2018), 124–135. https://doi.org/10.1109/TCBB.2018.2858806

Q. Zhang, P. Liu, X. Wang, Y. Zhang, Y. Han, B. Yu, StackPDB: predicting DNA-binding proteins based on XGB-RFE feature optimization and stacked ensemble classifier, Appl. Soft Comput., 99 (2021), 106921. https://doi.org/10.1016/j.asoc.2020.106921

S. Demirci, N. Uchida, J. F. Tisdale, Gene therapy for sickle cell disease: An update, Cytotherapy, 20 (2018), 899–910. https://doi.org/10.1016/j.jcyt.2018.04.003

V. M. Pinto, M. Balocco, S. Quintino, G. L. Forni, Sickle cell disease: A review for the internist, Int. Emerg. Med., 14 (2019), 1051–1064. https://doi.org/10.1007/s11739-019-02160-x

X. Yang, Q. Zhou, W. Zhou, M. Zhong, X. Guo, X. Wang, et al., A cell‐free DNA barcode‐enabled single‐molecule test for noninvasive prenatal diagnosis of monogenic disorders: Application to β‐thalassemia, Adv. Sci., 6 (2019), 1802332. https://doi.org/10.1002/advs.201802332

C. M. Dasari, R. Bhukya, Explainable deep neural networks for novel viral genome prediction, Appl. Intell., 52 (2022), 3002–3017. https://doi.org/10.1007/s10489-021-02572-3

J. T. Shieh, M. Penon-Portmann, K. H. Wong, M. Levy-Sakin, M. Verghese, A. Slavotinek, et al., Application of full-genome analysis to diagnose rare monogenic disorders, NPJ Genomic Med., 6 (2021), 1–10. https://doi.org/10.1038/s41525-021-00241-5

S. Mettananda, D. R. Higgs, Molecular basis and genetic modifiers of thalassemia, Hematol. Oncol. Clin., 32 (2018), 177–191. https://doi.org/10.1016/j.hoc.2017.11.003

B. Chakraborty, Genetic algorithm with fuzzy fitness function for feature selection. In Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on, 1 (2002), 315–319. https://doi.org/10.1109/ISIE.2002.1026085

D. Singh, S. P. Singh, Self-organization and learning methods in short term electric load forecasting: A review, Electr. Power Compon. Syst., 30 (2002), 1075–1089. https://doi.org/10.1080/15325000290085370

E. C. Morabito, M. Versaci, A fuzzy neural approach to localizing holes in conducting plates, IEEE Trans. Magn., 37 (2001), 3534–3537. https://doi.org/10.1109/20.952655

L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609

J. O. Agushaka, A. E. Ezugwu, L. Abualigah, Dwarf mongoose optimization algorithm, Comput. Methods Appl. Mech. Eng., 391 (2022), 114570. https://doi.org/10.1016/j.cma.2022.114570

L. Abualigah, M. Abd Elaziz, P. Sumari, Z. W. Geem, A. H. Gandomi, Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer, Exp. Syst. Appl., 191 (2022), 116158. https://doi.org/10.1016/j.eswa.2021.116158

O. N. Oyelade, A. E. S. Ezugwu, T. I. Mohamed, L. Abualigah, Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm, IEEE Access, 10 (2022), 16150–16177. https://doi.org/10.1109/ACCESS.2022.3147821

L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees, M. A. Al-Qaness, A. H. Gandomi, Aquila optimizer: a novel meta-heuristic optimization algorithm, Comput. Ind. Eng., 157 (2021), 107250. https://doi.org/10.1016/j.cie.2021.107250

J. A. López-Rivera, E. Pérez-Palma, J. Symonds, A. S. Lindy, D. A. McKnight, C. Leu, et al., A catalogue of new incidence estimates of monogenic neurodevelopmental disorders caused by de novo variants, Brain, 143 (2020), 1099–1105. https://doi.org/10.1093/brain/awaa051

E. K. L. Chiu, W. W. I. Hui, R. W. K. Chiu, cfDNA screening and diagnosis of monogenic disorders–where are we heading, Prenatal Diagn., 38 (2018), 52–58. https://doi.org/10.1002/pd.5207

A. M. Quinn, B. N. Valcarcel, M. M. Makhamreh, H. B. Al-Kouatly, S. I. Berger, A systematic review of monogenic etiologies of nonimmune hydrops fetalis, Genet. Med., 23 (2021), 3–12. https://doi.org/10.1038/s41436-020-00967-0

M. E. Niemi, H. C. Martin, D. L. Rice, G. Gallone, S. Gordon, M. Kelemen, et al., Common genetic variants contribute to risk of rare severe neurodevelopmental disorders, Nature, 562 (2018), 268–271. https://doi.org/10.1038/s41586-018-0566-4

M. Zech, R. Jech, S. Boesch, M. Škorvánek, S. Weber, M. Wagner, et al., Monogenic variants in dystonia: an exome-wide sequencing study, Lancet Neurol., 19 (2020), 908–918. https://doi.org/10.1016/S1474-4422(20)30312-4

D. M. Connaughton, C. Kennedy, S. Shril, N. Mann, S. L. Murray, P. A. Williams, et al., Monogenic causes of chronic kidney disease in adults, Kidney Int., 95 (2019), 914–928. https://doi.org/10.1016/j.kint.2018.10.031

G. Valles-Ibáñez, A. Esteve-Sole, M. Piquer, E. A. González-Navarro, J. Hernandez-Rodriguez, H. Laayouni, et al., Evaluating the genetics of common variable immunodeficiency: monogenetic model and beyond, Front. Immunol., 9 (2018), 636. https://doi.org/10.3389/fimmu.2018.00636

J. M. Alperin, L. Ortiz-Fernández, A. H. Sawalha, Monogenic lupus: a developing paradigm of disease, Front. Immunol., 9 (2018), 2496. https://doi.org/10.3389/fimmu.2018.02496

J. J. Ashton, E. Mossotto, I. S. Stafford, R. Haggarty, T. A. Coelho, A. Batra, et al., Genetic sequencing of pediatric patients identifies mutations in monogenic inflammatory bowel disease genes that translate to distinct clinical phenotypes, Clin. Transl. Gastroenterol., 11 (2020). https://doi.org/10.14309/ctg.0000000000000129

J. C. Almlöf, S. Nystedt, D. Leonard, M. L. Eloranta, G. Grosso, C. Sjöwall, et al., Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus, Hum. Genet., 138 (2019), 141–150. https://doi.org/10.1007/s00439-018-01966-7

S. Vidal, N. Brandi, P. Pacheco, J. Maynou, G. Fernandez, C. Xiol, et al., The most recurrent monogenic disorders that overlap with the phenotype of Rett syndrome, Eur. J. Paediatr. Neurol., 23 (2019), 609–620. https://doi.org/10.1016/j.ejpn.2019.04.006

S. Butscheidt, A. Delsmann, T. Rolvien, F. Barvencik, M. Al-Bughaili, S. Mundlos, et al., Mutational analysis uncovers monogenic bone disorders in women with pregnancy-associated osteoporosis: three novel mutations in LRP5, COL1A1, and COL1A2, Osteoporosis Int., 29 (2018), 1643–1651. https://doi.org/10.1007/s00198-018-4499-4

F. Cerrato, A. Sparago, F. Ariani, F. Brugnoletti, L. Calzari, F. Coppedè, et al., DNA methylation in the diagnosis of monogenic diseases, Genes, 11 (2020), 355. https://doi.org/10.3390/genes11040355

S. Yeruva, M. S. Varalakshmi, B. P. Gowtham, Y. H. Chandana, P. K. Prasad, Identification of sickle cell anemia using deep neural networks, Emerging Sci. J., 5 (2021), 200–210. https://doi.org/10.28991/esj-2021-01270

Published
2025-09-24
How to Cite
Faten Hameed Sabty. (2025). Mathematics Applications to Detect Fetal Syndromes. CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES, 6(4), 992-1006. Retrieved from https://cajmtcs.casjournal.org/index.php/CAJMTCS/article/view/829
Section
Articles