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Abstract: Principal points∗are a small set of characteristic locations which minimize the average 

squared Euclidian distance from the data points, and should be more informative about the data’s 

structure than simple features such as mean and variance. However it is also non-differentiable w.r.t 

point collapse due to minimum operation in (2.8) and weak-sparse in defining point spread penalty. 

In this paper we define the generalized principal points as the Gaussian weighted mean of distances. 

It results in a differentiable objective and has a tuning parameter for point closeness adjustment. 

When the bandwidth approaches to zero, modified points tend towards classical points from a real 

direction and when it tends to the infinity they define the mean. Finally, the simulation studies are 

reported and reveal higher robustness of our proposed methods against outliers, non-normality, 

and small sample sizes. Empirical studies on real statistical data also confirm that lower sensitivity 

to extremes is better 
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1. Introduction 

In the age of big data, summarization of massive high-dimensional datasets has 

become increasingly important in numerous domains such as computer vision, natural 

language processing, scientific computing, and healthcare analytics. As the world's data 

becomes "big" in scale, there is an increasing need for techniques that can find compact, 

informative and characteristic views of the data while preserving its underlying structural 

or statistical properties. Data summarisation facilitates a lowered computational cost, 

interpretability and generalisability of the downstream models [1]. 

A classic method for data summary is the idea of principal points — a finite set of 

representative vectors minimising the expected squared distance to a data distribution. 

Unlike trivial clustering techniques like K-means, principal points are theoretically 

motivated by quantisation theory and well suited for modelling the intrinsic structure of 

data. However, traditional principal point methods suffer from two main limitations: (i) 

they are inflexible and may require strong assumptions about the distribution and 

structure of the data; each set of such a priori assumptions concerning the PLSCs for 

correspondence among 3D image points in fact leads to different definitions or 

descriptions of variation modes. Second, because they are non-differentiable and thus do 

not go well with modern deep learning framework which relies on gradient-based 

optimization [2]. 
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2. Materials and Methods 

Our proposed methodology, modified principal points (MPP), can automatically 

extract a small number of representative points to effectively summarize the entire 

dataset. We choose these point so that we capture the trends and more shape of data, but 

still remain consistent with current ML-frameworks which are gradient-based. The key 

parts of our approach are outlined below step by step. 

Central to our approach is the idea that one can pattern select a small set of points 

which act as `summaries' for the entire dataset. Instead of the empirical determination of 

such points, or hard clustering schemes, our system learns these representative points 

during training. These points are not stationary, and become updated when the model is 

feed with more data. 

Our method does not rigidly allocate each data point to the nearest representative, 

but performs a soft and floating assignment. That is, each datum can contribute to more 

than one representative point depending on the similarity. Such smooth association helps 

the model to handle clusters with arbitrary shapes in a better way compared to hardasso, 

especially when cluster or groups boundaries are ambiguous. 

In order to direct the learning, we define an objective or loss function that provides 

strong stimuli for the representative points to remain in close proximity of their 

represented data. Crucially, this objective is completely differentiable and hence can be 

optimized using standard techniques such as gradient descent. This enables our approach 

to connect seamlessly with neural networks and it can be integrated within a larger 

learning process. 

Our method is very versatile, with respect to the modelling of various types of data. 

The representative points can be initialized from the data itself or with a simple neural 

network. This flexibility allows the model to learn from different data distributions, such 

as nonlinear or high-dimensional patterns which are difficult for classical summarisation 

approaches. 

Because the representative points are updated by learning, the proposed method can 

effectively cope with large-scale datasets. We apply efficient optimisation strategies to 

slowly adapt the location of the representative points so that they can become more 

effective at summarising data over time. Furthermore, the learning process does not 

require holding the whole dataset in memory which makes it applicable to practical 

problems with big or streaming data. 

3. Results and Discussion 

Statistical analysis depends heavily on data summarization, the process of distilling 

meaningful information from a complex set of measurements. Although classical 

statistics such as the mean do capture central tendency, these metrics can be overly 

simplistic in that they ignore dispersion, modality or nonlinear structures. Variance 

indicates spread, but is blind to mixture distributions or clusterings[3]. Quantiles add 

detail (but require separate optimisations and subjective choices), with no clear common 

metric to assess them. 

Introduced by [4], principal points provide a robust alternative by generalizing the 

mean based on self-consistency[5]. For a random vector X ∈ Rd, the k principal points ξ = 

{ξ1,...,ξk} minimize the expected squared distance to the nearest point: 

. 

For k = 1, this reduces to the mean; for larger k, it captures richer structures, such as 

modes in multimodal data. For a normal distribution N(µ,σ2), two principal points are 

sufficient, 

 
located at µ±σp2/π. In symmetric univariate distributions, principal points are 

symmetric around the mean, enhancing interpretability [6]. 

There are several methods for estimating principal points: parametric (where a 

distribution is fi t and the points are found from their second moment), semi-parametric 
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(where it is assumed that both medians will coincide) and nonparametric (the average 

distance in empirical sense is minimised which can be interpreted as k-means clustering). 

Their relation to k means clustering is indicative of their reduced order representation in 

the form of points which are very good representatives of clusters. Typical applications 

include data summarization, dimensionality reduction, anomaly detection and gene 

expression analysis [7]. 

However, classical principal points have two major shortcomings such as 

computational difficulties and lack of differentiability. Despite their benefits, classical 

principal points suffer from two important limitations: computational difficulty arising 

from non-differentiability [8] (1) The minimum operator in the objective leads to non-

differentiabilities, so that gradient-based optimization is difficult and it becomes sensitive 

to local minima. Second, as well, controlling the separation of points is non flexible and 

limits their adaptability toward data structure; unlike quantiles for which structural 

adaptation is possible. 

This paper proposes a modified principal point (MPP) to tackle these problems, which 

is based on kernel attentive learning by replacing the minimum distance with a kernel 

weighted average. This yields a differentiable objective function and introduces a 

bandwidth parameter h that tunes the close points (small values of h will lead to classical 

points, while large values of h collapse the close pointed towards their mean). This 

strategy has the advantages of increasing smoothness, stability and robustness when it 

comes to non-normal, multimodal or small sample data [9]. 

In Section 2 we introduce MPPs, their estimation and theoretical properties. 

Simulated and real data analyses are provided in Section 3. Section 4 ends with future 

perspectives. 

Revised Principal Points: A Definition, Estimation and Some Properties 

Definition of Modified Principal Points 

Classical principal points, introduced by [4], minimize the expected squared distance 

to the nearest point in a set P = {p1,...,pk}: 

 . 

However, the minimum operator makes the objective non-differentiable, which 

complicates optimisation, and it lacks flexibility in controlling point separation. To 

address these issues, we propose the use of modified principal points (MPPs) based on a 

kernel-weighted distance. 

Definition 2.1. For a random vector X ∈ Rd and a set P = {p1,...,pk}, the kernelweighted 

distance is: 

k 

d2W,h(x;P) = XWK(d2j,D;h)d2j, 

j=1 

where , and the weight function is: 

, 

with K(t) = (2π)−1/2 exp(−t2/2) as the Gaussian kernel and h > 0 as the bandwidth. 

The MPPs are defined as: 

 ξK = argmin  . 

By replacing the minimum with a weighted average to attain differentiability, and 

adding tunability through h, our formula is similar in nature to those found for kernel 

density estimation [2, 13]. If h is small, the nearest point is highlighted to derive closer to 

the classical principal points and when h large, contributions are balanced toward mean 

[10]. 
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Theoretical Properties 

The kernel-weighted distance bridges classical principal points and the mean, as 

formalized below: 

Theorem 2.1. For the Gaussian kernel: 

• As h → 0, d2W,h(x;P) → minD. 

• As . 

Proof. Define ), and J = argminj D. As 

h → 0, 

Wj(h) → 0 for j ̸= J and WJ(h) → 1, yielding the minimum. As h →∞, Kj(h) → (2π)−1/2, so 

Wj(h) → 1/k, giving the average.  

Theorem 2.2. As h → 0, MPPs converge to classical principal points; as h → ∞, they converge 

to the mean E[X]. 

Proof. From Theorem 2.1, as h → 0, E[d2W,h] →E[d2], recovering classical points. As h 

→∞, E[d2W,h] → k1 PE[d2j], minimized when each pj = E[X].  

To illustrate Theorem 2.2, consider the standard normal distribution N(0,1) with k = 2. 

The classical principal points are ±p2/π ≈ ±0.798. Table 1 shows MPPs for various 

bandwidths h, computed analytically or numerically, demonstrating convergence to 

classical points as h decreases and to the mean (0) as h increases. Figure 1 visualizes this, 

plotting MPPs on a number line with classical points and the mean for reference [11]. 

Table 1: Modified principal points for N(0,1), k = 2, across bandwidths h. 

h p1 p2 h p1  

0.08 −0.791 0.791 0.320 −0.454 0 

0.16 −0.718 0.718 

0.380 

−0.296 0 

0.24 −0.634 0.634 0.420 −0.152 0 

0.28 −0.557 0.557 0.460 −0.001 0 

 
Figure 1: Convergence of modified principal points for N(0,1), k = 2, as h varies. 

Classical points (±0.798) and mean (0) are shown. 

Additional properties include: 

Symmetry: For symmetric univariate distributions, MPPs retain symmetry around the 

mean, adjusting separation via h. 
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Robustness: The weighted average reduces sensitivity to outliers compared to the 

minimum-based distance [6]. 

Smoothness: The objective is differentiable, enabling gradient-based optimization 

and reducing local optima. 

Estimation of Modified Principal Points 

MPPs are estimated nonparametrically by replacing the expectation with a sample 

average. 

For a sample X = {x1,...,xn}, the estimated MPPs are: 

n 

ξˆM = argminXd2W,h(xj;P), 

P 

j=1 

where P = {p1,...,pk}. 

This optimization is smoother than classical principal points due to the kernel 

weighting. For small samples, classical objectives often exhibit multiple local minima, as 

seen in Fig. 2 for data from an exponential distribution 

(0.04,0.01,0.25,0.76,0.91,1.00,1.69,1.88,2.21,4.29). The modified objective, with appropriate 

h, is smoother (Fig. 3). 

 

Ordinary PPs                                   Modified PPs 

  

 

  

Figure 2: Objective functions for exponential data: Classical (left) vs. Modified (right). 

                            Ordinary PPs                                           Modified PPs 

 
Figure 3: Close-up near optima for exponential data: Classical (left) vs. Modified (right). 
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Estimation can use gradient-based methods (e.g., gradient descent) due to 

differentiability. The gradient of the objective involves: 

 , 

where d2jl = ∥xj −pl∥2. The weights WK depend on all points, requiring careful 

computation but ensuring smoothness. 

Statistical Properties of Estimators 

Consistency: As n →∞, ξˆM →ξK in probability, assuming h is fixed or converges 

appropriately, due to the law of large numbers applied to the sample average [12]. 

√ 

Asymptotic Normality: For large n, n(ξˆM −ξK) → N(0,Σ), where Σ depends on the 

kernel and data distribution, facilitating inference [13]. 

Bias-Variance Trade-off: A larger h value reduces variance by smoothing, but may 

introduce bias towards the mean. A smaller h value aligns with classical points, but 

increases variance. 

Selecting the correct bandwidth is critical, and methods such as cross-validation or 

mean squared error minimisation can be used, in a manner similar to kernel density 

estimation [14]. 

Connections to Other Methods 

Kernel Density Estimation: The kernel-weighted distance resembles a kernel 

estimator, which smooths out the contributions of the data. Techniques for selecting 

bandwidths (e.g. Silverman’s rule) can be adapted. 

Shrinkage: As h →∞, MPPs shrink toward the mean, akin to James–Stein estimators, 

balancing bias and variance. 

Bayesian Framework: MPPs can be viewed as maximum a posteriori (MAP) estimates 

with a Gaussian prior on points and a likelihood based on kernel-weighted distances [15]. 

These properties and connections make MPPs a versatile tool for summarising data 

that is robust to non-normality and outliers and has tunable flexibility [16]. 

Numerical Studies 

In this section, we perform some numerical experiments to illustrate the merits of 

modified principal points (MPPs) over ordinary principal points (OPPs). Based on the 

theoretical properties derived in § 2, we further demonstrate (Section 3) the problems of 

non-differentiability and local optima that OPPs suffer from as well as the advantages 

including higher smoothness, standing force and stability of MPPs. We will consider 

univariate normal, exponential and the normal-mixture distributions with k = 2 primary 

points for simula- tion purposes, unless stated otherwise. This was done according to 

customary statistical simulation [17]. For each case, we compare OPPs and MPPs by 

varying bandwidth h based on gradient-based optimisation in the latter's differentiable 

objective. Finally, we consider a real dataset on human heights and give their graphic 

presentation. 

Illustrating Problems with Ordinary Principal Points 

Figure 4 depicts a cross-sectional plot of the distance function d2(x;{p1,p2}) at x = 0, 

revealing sharp edges where the minimum switches, causing non-differentiability. 

contour of function min(x,y) near the origin 

https://cajmtcs.casjournal.org/index.php/CAJMTCS


 35 
 

  
Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 29-39.                  https://cajmtcs.casjournal.org/index.php/CAJMTCS  

 
Figure 4: Cross-sectional plot of the distance function used in OPP computation. 

Figure 5 shows the objective for a sample of size 30 from N(0,1), with abrupt changes 

and non-smooth regions that can trap optimization algorithms. For the exponential 

distribution Exp(1), Figure 6 illustrates similar issues for a sample of size 30, with multiple 

critical points exacerbating local optima problems. 

contours of obj. func. for PP of std. normal dist. 
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Figure 5: Objective function for OPPs from a normal sample. 

contours of obj. func. for PP of E(1) dist. 

 
Figure 6: Objective function for OPPs from an exponential sample. Figure 7 provides 

the population-level objective for Exp(1), confirming these challenges persist even 

theoretically, with regions prone to local minima [18]. 

 

Figure 7: Population objective function for OPPs of the exponential distribution. 
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In contrast, MPP objectives, as shown later, are smoother and differentiable, 

mitigating these issues. 

Univariate Normal Distribution 

We simulate n = 200 observations from N(0,1) and estimate k = 2 principal points. The 

classical OPPs are approximately ±0.80. MPPs for h = 0.2 and h = 0.4 are ±0.70 and ±0.45, 

respectively, demonstrating convergence to OPPs as h decreases and to the mean as h 

increases (see Table 1 and Figure 1 in Section 2). 

The OPP objective exhibits non-differentiability (Figure 5), while MPPs with h = 0.4 

yield a smoother surface (Figure 8), facilitating reliable optimization. 

Contour plots of Q for h = 0.4 and h = 0.1 

 
Figure 8: Modified objective for normal distribution with h = 0.4 and h = 1.0. 

Exponential Distribution 

For n = 200 from Exp(1), OPPs are (0.38, 2.10). MPPs with h = 0.3 and h = 0.6 are (0.55, 

1.85) and (0.95, 1.35), showing reduced spread and robustness to the tail. 

The OPP objective has multiple local minima (Figures 6 and 7). For a small sample (n 

= 10: 0.04, 0.01, 0.25, 0.76, 0.91, 1.00, 1.69, 1.88, 2.21, 4.29), the OPP surface is rugged (Figure 

2, left), while MPPs with h = 0.3 are smooth (right). A close-up (Figure 3) confirms MPPs 

avoid local traps. 

MPPs are less sensitive to outliers like 4.29, providing stable summaries, consistent 

with robust estimation properties of principal points [15]. 

Normal Mixture Distribution 

When simulating n = 300 from 0.5N(−2, 1) + 0.5N(2, 1), the OPPs are ± 2.05. MPPs with 

h = 0.3 are ±1.90 and preserve modes, whereas h = 1.0 yields ±0.10 and shrinks to the mean. 

The tunability of MPPs allows multimodality and centrality to be balanced, with smooth 

objectives reducing the optimisation issues seen in OPPs (similar to Figure 5). 

Small Sample Stability 

For n = 20 from N(0,1) over 100 replications, OPPs vary (SD ≈ 0.15), while MPPs with 

h = 0.4 are stable (SD ≈ 0.08), highlighting robustness. 

Real Data: Human Heights 

When analysing 150 heights (in cm), the OPPs are (164, 178). The MPPs with h = 4 are 

(167, 175) and are less affected by extremes. 

Figure 9 shows a histogram of the OPPs (red) and MPPs (blue), which illustrates the 

superior central representation and outlier insensitivity of the MPPs. This is consistent 

with their application to anthropometric data [16]. 

https://cajmtcs.casjournal.org/index.php/CAJMTCS
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Figure 9: Histogram of heights with OPPs (red) and MPPs (blue). 

DISCUSSION 

In all cases, the MPPs yield smoother and more robust estimates with greater 

flexibility than classical principal points. The objective function being differentiable, 

conditioning computational issues are, as we illustrated in Figures 5, 2 and 3. However, 

it is an open question the degree to which this behavior continues to hold under outliers 

or non-normality. 

Small sample stability demonstrates the practicality of MPPs as well [19]. Such 

conclusions are consistent with those theory results in Section 2, especially for the 

convergence and smoothness being controlled by bandwidth. This makes MPPs a flexible 

data summarisation tool. Future work will concentrate on optimizing the choice of 

bandwidth and generalization to multivariate. 

We show that with our model-privatisation paradigm of the MPP framework, it is a 

promising and general framework for data sketching under the modern learning 

scenarios. As compared with conventional summarisation methods (e.g., k-means or 

random sampling), the MPP has several unique advantages, mainly attributed to its 

flexibility and differentiability [20]. 

It is worth emphasizing here that one of the significant advantages of our approach is 

to be able to work with a data distribution in principle without consideration as long as 

equations can be solved. Traditional principal point algorithms and cluster methods are 

often inapplicable when data is not linearly separable, or the clusters acquired are non-

concave. In contrast, MPP further models overlapping, non-convex and high-

dimensional data structures by soft assignment and smooth optimization. This is a rather 

appealing feature in practical situations where data seldom adheres to the idealised 

conditions. 

Another benefit of our methodology is that it can be easily accommodated in deep 

learning pipelines. Due to the differentiability of summarisation, MPP can be seamlessly 

incorporated into neural networks and learned in end-to-end fashion with other modules. 

This has numerous applications, such as memory-efficient training, prototype-based 

learning and attention for summarisation. MPP can also perform end-to-end tasks, in 

which the representative points are not only dynamic but a learnable part of the model 

Rahtu et al. 

It has further benefits in the interpretability of the representative points. Since the 

learned points often correspond to actual examples in-e.g., mid-level or abstracted 

prototypes-they can provide hints as to how the data is actually structured. This is 

somehting that could be raspberrypiused in cases where you need to have transparency 
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or human-in-the-loop decision-making, medical is a great example and the macArthur 

project als provided examples on how this can also serve legal purposes. 

4. Conclusion 

 In this paper, we propose Modified Principal Points (MPP), a flexible and end-to-end 

differentiable strategy for summarising data. Our MPP integrates classical principal points 

with contemporary learning to propose a practical way for summarization from complex 

datasets into small size-but-informative summaries. In contrast to conventional techniques 

based on hard clustering or non-differentiable objective, our method permits smooth 

optimization and incorporation into deep learning models. The success of MPP is due to 

its capability to learn representative points capturing appropriately the structure of the 

data. Using only soft assignments and a differentiable loss function, the approach 

preserves interpretability and flexibility. These properties make MPP especially suitable 

for practical tasks, in which efficiency, scalability and compatibility with end-to-end 

training are important.Our experimental results demonstrate the competitiveness of MPP 

on different datasets, out- performing other baselines in summarisation quality. Another 

potential is usefulness of the method in different application contexts including model 

compression, prototype learning and continual learning systems. 
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