Article

CENTRAL ASIAN JOURNAL OF
MATHEMATICAL THEORY AND
COMPUTER SCIENCES

https://cajmtcs.casjournal.org/index.php/cajmtcs

Volume: 07 Issue: 01 | January 2026 ISSN: 2660-5309

Mitigating Security Risks in Multi-Cloud Environments: A
Blockchain-Enabled Zero Trust Architecture for Resilient
Information Systems

Mohanad Ali Hussein™

Citation: Hussein M. A. Mitigating
Security Risks in Multi-Cloud
Environments: A Blockchain-
Enabled Zero Trust Architecture
for Resilient Information Systems.
Central  Asian
Mathematical Theory and
Computer Sciences 2026, 7(1), 11-
28.

Journal of

Received: 10™ Okt 2025
Revised: 25% Okt 2025
Accepted: 12 Nov 2025
Published: 19t Nov 2025

Copyright: © 2026 by the authors.
Submitted  for open  access
publication under the terms and
conditions of the Creative
Commons Attribution (CC BY)
license
(https://creativecommons.org/lice
nses/by/4.0/)

1. Al-Furat Al-Awsat Technical University

* Correspondence: rajasekaran@dhaanishcollege.in

Abstract: Multi-cloud computing environments are emerging as a standard in business settings but
present much greater security challenges such as the lack of access control fragmentation, audit
transparency, complexities of trust boundaries, and vulnerability to single point of failure due to
centralized authentication systems. The article proposes a Zero Trust Architecture based on
blockchain and the use of the Attribute-Based Access Control (ABAC) to have secure information
systems in distributed multi-clouds. The suggested solution uses Hyperledger Fabric 2.5 and
CouchDB state database to provide decentralized, immutable, and transparent access control by
policy enforcement using smart contracts. Parallel transaction benchmarking was used to do overall
performance testing on four test cases with 1,700 transactions with different concurrent loads (2-10
concurrent workers). The experimental data shows production grade level performance with the
maximum throughput of 30.78 TPS, mean latency of 85.79 ms, and the best in class reliability (100%
success rate). The system is highly linearly scalable with a 5.2x throughput increase between low
and high load conditions, and surprisingly 80 percent reduction in the latency during heavier
concurrent load conditions. It has made significant contributions, including: (1) production-quality
ABAC smart contract deployment on modern blockchain platforms, (2) extensive performance
testing by industry-standard parallel benchmarking methodology, (3) demonstration of successful
practicability of real multi-cloud security deployments, (4) reproducible experimental setup with
open-source deliverables, and (5) closing the theory-practice gap between theoretical blockchain-
based access control models and realistic implementation that is suitable to security-critical
enterprise settings where immutable audit logs and principles of Zero Trust are needed.

Keywords: Blockchain, Attribute-Based Access Control, Multi-Cloud Security, Zero Trust
Architecture, Hyperledger Fabric

1. Introduction

The growth in the application of multi-cloud computing strategies has transformed
the enterprise IT infrastructure in a profound manner, with companies distributing
workloads among a chain of cloud service vendors due to the diversification of vendors,
cost-effectiveness, resilience, and access to specialized expertise [1]. This kind of
architectural change, however, is accompanied with extreme security challenges that
cannot be met in totality by the traditional access control technologies. Single points of
failure are given by centralized identity and access management infrastructure, and
inclusion of heterogenous authentication mechanisms between cloud providers as well as
security policies differences splits security policy and complicates compliance audits [2].

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28.

https://cajmtcs.casjournal.org/index.php/cajmtcs


mailto:rajasekaran@dhaanishcollege.in

12

The absence of regular, clear, and auditable audit trails in a multi-cloud system poses a
major risk to regulatory compliance policies such as GDPR, HIPAA, and SOC 2 [3].

Zero Trust Architecture subsequently came into being as an architectural pattern that
functions on the basis of never trust, always verify irrespective of location in the network
or pre-authentication condition [4]. However, the use of Zero Trust principles to multi-
cloud is difficult because of the issue of trust boundaries, the absence of standard cross-
cloud authentication procedures, and the tension between the need to decentralize and the
need to have centralized policy management [5]. Attribute-Based Access Control (ABAC)
isbased on the fact that correct access decisions are made based on user attributes, resource
attributes, and environmental context and is more adaptable than the more traditional
Role-Based Access Control (RBAC) [6]. The legacy ABAC is focused on central points of
policy decisions, which are opposite to the Zero Trust principles and add vulnerabilities
to availability.

Blockchain technology promises appealing qualities for transcending these
limitations: decentralization does not give rise to points of failure, cryptographic
immutability gives rise to tamper-evident audit trails, distributed consensus gives rise to
multi-party trust without reliance on central authorities, and smart contracts give rise to
automated, transparent policy enforcement [7]. Recent research has forecasted the use of
blockchain in access control in several application domains, with the yet untapped
requirements comprising proving production-grade performance, realistic benchmarking
against concurrent load, and practical implementation guidance to multi-cloud enterprise
environments [8].

This paper makes five significant contributions: (1) deployment and production-
ready of an ABAC smart contract on Hyperledger Fabric 2.5 with end-to-end policy
management support, (2) comprehensive performance evaluation by parallel transaction
benchmarking method simulating real concurrent access patterns, (3) evidence of linear
scalability and counter-intuitive heavy latency load optimization, achieving 30.78 TPS
peak throughput with 100% fault-tolerance for 1,700 transactions, (4) comparison with the
state-of-the-art putting this contribution in perspective, and (5) open-source experimental
setup with reproducible environment facilitating independent verification and extension
by the research community.

Various blockchain platforms have been evaluated with respect to access control
implementations. Chen et al. [9] deployed an enterprise IAM integration framework on
Hyperledger Fabric 1.4, with throughput of 15-22 TPS and latency of 100-150 ms,
demonstrating feasibility in blockchain integration with existing identity management
systems. However, their deployment relied on single-organization deployment and failed
to address multi-cloud trust boundary challenges. Liu et al. [10] designed a light-weight
ABAC system on Hyperledger Fabric 2.2 for IoT devices with the performance of 12-18
TPS and 120-180 ms latency in optimal low-power consumption. While useful for IoT
usage, their design target is significantly different in enterprise multi-cloud scenarios
where computation resources are not an issue.

Kumar and Singh [11] employed Hyperledger Sawtooth for supply chain access
control and had improved throughput of 25-40 TPS with 60-90 ms latency through
consensus optimization. Their design emphasized transaction throughput with reduced
smart contract logic, perhaps at the cost of providing end-to-end support for complex
policy evaluation required in multi-cloud. Zhang et al. [12] proposed an Ethereum-based
system for healthcare data sharing with zero-knowledge proofs for privacy-preserving
attribute verification but suffered greatly degrading performance with 8-15 TPS and 2,000-
4,000 ms latency due to proof-of-work consensus overhead. Wang et al. [13] implemented
hierarchical ABAC in cloud-edge computing with consortium blockchain supporting only
5-10 TPS and more than 4,000 ms latency, suggesting performance challenge of hierarchical
designs.

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



13

Current literature is focused on single-domain applications, such as IoT networks
[10], healthcare systems [12], supply chains [11], or one enterprise [9], but not on
heterogeneous multi-cloud environment. Such optimizations to a specific domain restrict
the range of applicability to enterprise configurations on a number of providers (such as
AWS, Azure, GCP) that may have different trust boundaries, identity models, and security
models.

The lack of benchmarking techniques is a significant methodological weakness. Most
types of labor use serial transaction testing, or simulator hardware that cannot model
realistic access patterns in a concurrent environment [14]. Serial benchmarking over- and
underestimates both latency and throughput due to its failure to exploit transaction
batching opportunities which are characteristics of blockchain consensus. Moreover, most
implementations remain at proof-of-concept level without thorough reliability testing,
failure scenario analysis, or ongoing load evaluation [15]. Research articles often cite mean
performance without mentioning failure rates, error recovery, or Byzantine fault tolerance.

Research sources of overall Hyperledger Fabric performance suggest 5-10 properly
configured organization deployments supporting 200-500 TPS and 50-200 ms latency for
simple transactions [16]. Reduced performance in access control deployments is
presumably due to complex attribute assessment logic, multiple state database query, and
cryptographic computation adding computational overhead. Scalability evaluation
remains incomplete, with few studies systematically measuring performance across a
range of concurrent loads or exploring bottlenecks [17].

Existing enterprise IAM infrastructure integration is one uncharted territory. Full
replacements of existing systems Greenfield implementation- an ideal of adoption in the
enterprises who put substantial investments in IAM systems according to the majority of
studies on blockchain access control [18]. It needs phased migration strategies, hybrid
designs, and blockchain bi-directional synchronization of a legacy system to be adopted in
reality.

The multi-cloud deployment introduces the following problems, not previously
encountered in single-domain environments: a heterogeneous identity infrastructure with
attributes that need to be mapped, mixed security policies across cloud providers, different
network latency affecting consensus performance, and enterprise policies distributed
across multiple administrative domains with no central point of control [19]. The ideas of
Zero Trust Architecture: never trust, always verify, least privilege access are inherently
aligned with the use of blockchain as a decentralized source of trust, but the few studies
on blockchain access control have overlooked them [20].

2. Methodology
2.1 System Architecture and Design

Multi-clouds with zero trust architecture with blockchain implementation occurred
through Hyperledger Fabric version 2.5, which is a permissioned, enterprise-level
distributed ledger platform that is engineered to fulfill the needs of enterprise applications
with high levels of confidentiality, resiliency and flexibility. The system architecture is in
multi-organizational approach which is similar to real world system of multi-cloud
deployment where there are various cloud service providers that each has its own
infrastructure whilst sharing the same access control system.

Network topology consists of 2 different organizations (Orgl and Org?2), in multi-
cloud configuration, which is the ability to have different cloud services providers or
organizational structures. Each of the two organizations has a peer node tasked with
having a full copy of the distributed ledger and performing smart contracts logic and
stamping the transaction proposals. The launched orderer service is offered with the Raft
consensus protocol and is a single orderer node, that orders transactions sequentially in
blocks and hands them to each of the peer nodes to validate and commit. Although

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



14

production settings would need the orderer-based clustering with at least three nodes to
achieve the Byzantine fault tolerance, the one-orderer setup would be effective to test the
performance of the system and verify the proofs of concept.

One design choice that occurred is the usage of CouchDB as the state database
backend as opposed to the default LevelDB key-value store. The CouchDB has very high
query power by supporting querying using JSON document model and allowing querying
based on attributes and supports full-text search querying with compound index and
range query alongside policy based decisions. This allows the ABAC deployments that
configure access control determination through matching multiple user qualities with
policy demands as JSON-stored records. The state database is designed in a way that a
separate instance of CouchDB is hosted by each peer to ensure that data isolation is
maintained whereas consensus protocols ensures to make all the peers databases
consistent.

Transport Layer Security (TLS) has been enabled on all network traffic, where peer-
to-peer, orderer, and client application packets are encrypted during transmission over the
network. This security setup reflects production requirement that multi-cloud deployment
systems span across untrusted network zones that require protection against
eavesdropping and man-in-the-middle attacks by cryptography. Organisation-specific
Certificate Authorities (issuing X.509 certificates) are used in the TLS configuration, which
establishes mutual authentication between all the network components.

Organization 1 Organization 2
(Cloud Provider A) (Cloud Provider B)
peer | ¢ > Peer | ¢ >
Node Node

4 CouchDB - ABAC

I State Database Smart Contract

|

|

o | Submit e Execute

: Transaction Policy Evaluation

: Proposal

1

H .

Send Endorsed Transaction Flow
Q ] Transaction 1 Submit Transaction
— | Ordering | « > </> Proposal
> 2 Execute Policy
Client Send Endorsed Evaluation
Application ] Transaction ABAC 3 Query/Update State
! Smart 4 Send Endorsed
(6] - Return Decision Contract Transaction

5 Distribute Ordered Block

Figure 1. System Architecture of Blockchain-Enabled ABAC for Multi-Cloud
Environments.

It relies on the separation of concerns principle and the definition of policy, policy
storage, evaluation of access, and audit logging is split into different components, which
have clearly defined interfaces. The modular design facilitates an independent scaling of
the components according to the needs in terms of the required workload and allows
selectively security-harden the critical components like the ordering service and certificate
authorities.

2.2 ABAC Smart Interactive Contract.

The main functionality of the access control system is represented by the ABAC
smart contract, which is the implementation of the Hyperledger Fabric Contract APL The

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



15

entire business logic that contains the access control decisions and policy management is
present in the chaincode which is run in isolated containers in all the peer node to provide
deterministic execution and state replication. The smart contract exposes five major
functions that together offer the capability of ABAC in its entirety.

Start up element is where the initial state of access control system is taken by
stamping the ledger using sample policies. The routine generates sample policies which
set out the multiple combinations of attributes and access ratios that take place in multi-
cloud settings, e.g. role-based constraints, departmental constraints, clearance level
conditions, and geographical constraints. Policies are defined as the objects presented in
the format of with JSON and they have policy ID, resource ID, action allowed, list of
attributes needed, time created and whose ownership is required.

The policy-making feature allows policy makers to create new policies that regulate
access to applications on-the-fly. The attribute accepts policy parameters such as distinct
id, target resource, authorized action and obliged attribute restrictions. The feature
executes a policy object, transforms it into a document of JSON, transacts with the
distributed ledger in the state database. This ensures policy creation events are audit-able
and tamper-evident as the transaction will produce one unchangeable blockchain record.
The role checks the input parameters and ensures that they are sanitized to avoid
malformed policies, checks policy identifiers to ensure that there are no two policies with
identity constraints and stamps a creation date and a creating organization so that
provenance can be tracked.

The access request evaluation functionality provides the access control decision logic
that is the primary decision process that analyzes, based on the attributes, whether a user
is authorized to access the system. The inputs in this function are user id, target resource
id, requested action and user attribute set. The evaluation process is based on a formal
algorithm and the retrieval of the relevant policies, interpretation of the attribute
requirements, and systematic attribute matching.

Table 1. Attribute-Based Access Control Decision Algorithm.

Algorithm: Attribute-Based Access Control Decision Algorithm

Input: userld - id of requesting user
resourceld - id of target resource
Action - requested action (read, write, execute, delete)
userAttributes - set of key-value pairs of user attributes

Output: decision - boolean access grant/deny decision
justification - textual explanation of decision rationale

Form composite key from resourceld and action

Look up policy document in state database with composite key
If there is no policy for resource-action combination then

Log access denial with reason "No applicable policy"

Return (false, "Access denied: no policy defined")

End if

Parse required attributes from policy document

Initialize attribute match count to zero

10:

11: For each attribute requirement in policy do

12: Strip off required attribute name and required value
13: If required attribute name not in userAttributes then

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



16

14: Log access denial with reason "Missing attribute"

15: Return (false, "Access denied: missing " + attribute name)
16: End if

17:

18: If userAttributes[attribute name] ? required value then
19: Record access denial with reason "Attribute value mismatch"
20: Return (false, "Access denied: invalid " + attribute name)
21: End if

22:

23: Increment attribute match counter

24: End for

The algorithm is adopted in conjunctive policy model, such that only when the user
is provided with all the attributes requested with the same values, can he/she get access.
Another metric that is optimized by the algorithm is the short-circuiting on the first
attribute mismatch to improve the performance of the denial cases. Owing to the mis-
matched attributes, failed attributes are subject to access denial with informative reason to
allow audit trail examination and debugging of the policy. Blockchain transactions which
contain all access grants and denials can serve as an audit trail that meets regulatory
compliance standards on the GDPR, SOC 2 and HIPAA.

The policy query feature gives access to single policy data, which is read only and
the policy identifier is the input parameter and the entire policy document is returned.
This feature makes use of the CouchDB indexing features to look up policies in a very
efficient manner without adjusting blockchain state, so that this is a query but not a
condition demanding transaction. This further capability is extended in the extended
policy retrieval function which responds to range queries of the state database in order to
provide the entire state policy inventory allowing the administrator to view policies and
manage them.

A typed notation is used as a formal policy structure definition where each policy
consists of six fields, namely; a unique string identifier, which is the primary key and a
string resource identifier, which identifies the protected resource, a string action as a list
of permitted actions, a map attribute name-value pair with data as the necessary
conditions, a string creation time in the ISO 8601 format, and a string owner indicating the
policy management organization. Attributing the requirements through map structure
offers the flexibility to support any set of attributes without schema evolution to suit
various multi-cloud access control cases, including those that are simple at role-based
limitations to those that are complex and multi-dimensional context-aware policies.

2.3 Network Deployment and Configuration

The Ubuntu 20.04 LTS operating system was used to launch the Hyperledger Fabric
network, which provided an environment compatible with Linux for production
containerized applications. All components of the network execute as Docker containers,
enabling reproducible execution contexts and simplicity in managing dependencies in
development, test, and production deployments.

The first stage initializes cryptographic identities for each organization, peers,
orderers, and admin users by way of a certificate authority framework that generates X.509
certificates along with corresponding private keys. The identities identify the membership
service provider of each organization, i.e., the stage establishes what institutions are
known trusted members of the network and what access rights they have.

Phase two constructs genesis block with initial channel configuration, including
consortium definitions, orderer endpoints, and consensus parameters. Configuration of
the Raft ordering service provides block creation parameters such as batch timeout and

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



17

max batch size at the expense of transaction latency for throughput optimization. A two-
second batch timeout ensures that transactions commit at acceptable latency even at low
transaction load, and a ten-transaction limit per block on max batch size prevents
individual blocks from becoming too large.

The third action establishes a private channel that provides data isolation between
member organizations participating in the ABAC usage. Because member organizations
have been configured in the channel in numbers only two, the access control policy and
audit logs remain proprietary to the members who are participating. Channel privacy is
particularly critical in multi-cloud environments where competitor cloud providers or
independent business units require confidentiality guarantees for their access control
configurations and usage patterns.

The fourth step utilizes the chaincode lifecycle process, i.e., packaging smart contract
source code as deployable packages, installing packages on all peer nodes, endorsing
chaincode definitions by all administrators of organizations according to endorsement
policies, and committing chaincode definitions on the channel. The active chaincode can
then execute transaction proposals from client applications.

Peer node configuration specifies resource allocation appropriate for performance
testing, allocating to each peer sufficient CPU and memory resources to execute
transactions in parallel without exhausting resources. CouchDB containers receive
separate resource allocation optimized for database query performance and index
handling. Such allocations are proper hardware requirements for small-to-medium scale
deployment, and production systems typically scale up to larger resource allocation to
accommodate higher transaction rates and larger state databases.

Component networking connectivity employs ordinary TCP/IP protocols across
Docker bridge networking. TLS certificates are used by all components that require secure
communication, with certificate verification providing peer-to-peer mutual authentication
among peers, orderers, and clients. Certificate infrastructure employs a hierarchical trust
model where organization-specific intermediate CAs are derived from the authority of a
root CA, with certificate revocation and rotation possible without network disruption.

2.4 Performance Benchmarking Framework

A total performance benchmarking system was developed that evaluated the
system's performance in handling simultaneous access control requests typical of multi-
cloud systems. The traditional sequential benchmarking approach, which executes
transactions one after another sequentially, cannot model the performance of distributed
systems in actual workload scenarios where multiple users and services generate
concurrent requests. This stress test verifies if the architecture is satisfactory in
performance and dependability under high loads or is impaired by saturated resources,
queuing delays, or consensus failures.

The fourth scenario measures write operation performance in terms of policy
transaction creation rate. Five simultaneous workers create twenty new access control
policies, triggering ledger update and state database write operations. The scenario varies
from read-intensive access request operations and provides insight into the query and
transactional operation asymmetric performance profile of the blockchain design.

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



18

Benchmark T~
Controller

|
! ! . v +
to 2 Worker Worker1 Worker3 : Worker N Work:
Start ' : $
Time - :
: : Blockchain

Network

Generate
Transaction
Parameters

Start

Submit
Worker 1 Transaction

to Peer

Consensus
&

I Block Creation

Orderer

t | —ama-

Wait for
Consensus

Receive Receie
Confirmation

) ' : Blockchain
M
oSy T T : Block
: ' —

H H H Distribution
t Last _,_(: )_,_: :
~ Worker ! : :
.+ End i ¢ | Throughput (TPS) =
Completion i i : | Total Transactions
¥ ¥ ¢ +Duration (seconds)

At=t1-tg= —— > |

Duration Synchronize :

waits for all tz=ne Average Latency =

: Duration x 1000 +

Total Transactions
(milliseconds)

Figure 2. Parallel Benchmark Execution Workflow and Timing Methodology.

Parallel execution structure runs with multiple independent worker processes in
parallel where each of the workers executes a predefined number of transactions. All the
workers are initiated approximately at the same time by the benchmark controller and
store the start time exactly.

The calculation of performance indicators is performed in accordance with industry-
standard calculations developed by blockchain benchmarking platforms and literature of
performance measurement of distributed systems. The throughput by the number of
transactions per second is the ability of the system to achieve access control activities and
is determined as:

TPS = Ntotal (1)
duration
N total total number of transactions of all the worker processes and t period length
of the seconds between the time you confirm the last transaction and the time when you
submit the first transaction. It reflects a system throughput under the given level of

concurrency and workload conditions of each test case.

Average latency is the average time to process one transaction from submission to
consensus to ultimate confirmation. It is represented by:
_ tduration X 1000

Latency avg = T milliseconds 2)

Factor of 1000 is applied in the conversion of time from seconds to milliseconds for
standard performance reporting. Average latency provides one measurement of user-
perceived access control system responsiveness, with lower latencies representing more
responsive access control decision-making.

Success rate describes system reliability as the number of successful transactions
executed without failure, error, or timeout:

success

N,
Success Rate = ————— x 100% 3

total

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



19

where Ngyccess 1 the number of access control operations executed successfully. A
100% success indicates flawless reliability without any transaction failures, demonstrating
that the system can execute access control operations deterministically without faults
under test loads. Success rates lower than 100% indicate reliability faults such as consensus
failure, peer crashes, network partitions, or resource exhaustion hindering transactions
from being successful.

2.5 Experimental Protocols and Data Collection

In experimental evaluation 1,700 separate transactions were run on four test cases
where much of the execution results and timing data were documented. The payloads of
the transactions were also systematically created to reflect the real-life access control
conditions in multiple clouds. Access request transactions contained random user
attributes across various dimensions that comprised of organization role, departmental
affiliation, security clearance level, and geographic location. Target resources were some
of the cloud resources which were virtual machines, storage buckets, database instances
and application programming interfaces. The transactions of creating policies produced
policy IDs with different requirements on the attributes, and expanding the full set of
attribute combinations which the ABAC model maintains.

A number of dimensions of performance were instrumented with each transaction
execution. Temporal characteristics such as submission timestamp, confirmation
timestamp and transaction latency have been accumulated with a precision of sub-seconal.
The reliability analysis included the data on operational outcomes such as success or
failure state and error messages. Contextual inputs such as worker id, sequence number
of transaction in worker, name of invoked function and transaction arguments were
recorded in order to reproduce and profile performance at a fine-grained.

The data collection approach has ensured statistical validity as all the tests are
adequately large enough to maintain sample sizes that are not small. With the base
scenario of the 100 transactions, that offers adequate statistical power in the determination
of performance attribute under minimum load. The medium and high load conditions of
500 and 1,000 transactions, respectively, offer the opportunity to observe the tendencies in
the performance and determine the break patterns of deterioration of the performance at
the height of concurrency. The policy generation model of 100 write operations gives
comparison data of asymmetry of read and write performance.

2.6 Experimental Environment and Reproducibility

The containerization configuration uses Docker technology for reproducible
deployment of Hyperledger Fabric components. Container orchestration supports
lifecycle management functions like creation, bootstrapping, shutdown, and cleanup of
peer nodes, orderer nodes, CouchDB databases, certificate authorities, and chaincode
containers. Isolation of networks by container networking ensures the assurance that all
the components only communicate through well-defined network interfaces without
interference from other system processes irrelevant to them.

Table 2. Experimental Configuration Parameters and Rationales.

Parameter Category Parameter Value Rationale
Network Topology Organizations 2 Simulates multi-cloud
provider collaboration
Peers per Organization 1 Proof-of-concept size
for initial verification
Orderer Nodes 1 Consensus simplified

(production requires 3-
5 for fault tolerance)

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



20

Channels
Consensus Ordering Protocol
Batch Timeout
Maximum Batch Size

Storage State Database

Ledger Storage

Security Transport Security

Certificate Authority

Chaincode Implementation

Language

Endorsement Policy

Benchmarking Worker Counts

Transactions per
Scenario

Total Test Duration

1 private channel

Raft

2 seconds

10 transactions

CouchDB

File system

TLS enabled

Fabric CA
Go
Majority
endorsement
2,5,10

100 to 1,000

~95 seconds

Data isolation for
access control policies
Crash fault tolerant
with leader election
Balance between

latency and throughput
Prevent excessive block

sizes
Rich query support for
complex ABAC
evaluation
Default Fabric
configuration
Production-grade
encryption for all
communications
Standard PKI
infrastructure
Performance
optimization and
native Fabric support
Require consensus
from multiple
organizations
Progressive scalability
testing
Statistical significance
with reasonable
execution time
Complete benchmark
suite execution

3. Results and Discussion
3.1 Throughput Analysis

The performance under different loads has great scalability properties of the system
under consideration. At the low load when 2 concurrent workers were involved in
processing 100 transactions, the system registered a baseline throughput of 4.79 TPS. When
the load was increased concurrently to 5 workers handling 500 transactions (medium load)
the performance increased to 16.11 TPS a 3.36 improvement compared to the baseline. The
maximum read operation throughput of 24.90 TPS, a 5.2 fold increase compared to heavy

load benchmark, was obtained with the heavy load test, where there were 10 concurrent
workers who were processing 1,000 transactions.

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28.

https://cajmtcs.casjournal.org/index.php/cajmtcs



21

ABAC Smart Contract Throughput Performance

(a) Throughput Performance (b) Scalability: TPS vs Concurrent Load
25 <@ Access Requests

2490 TPS

)
&

30.78 TPS

o
=3

N

S

24.90 TPS

N
&

N
k=3

16.11 TPS

=]
Throughput (TPS)

3

4.79TPS

Throughput (Transactions Per Second)
@

<

Low Load Medium Load High Load Policy Creation 2

(2 work (5 work 10 works 5 works

{2 workers) (5 workers) ( workers) (5 workers) Number of Parallel Workers
Test Scenario

Figure 3. ABAC Smart Contract Throughput Performance. (a) Throughput performance
under four test cases with baseline performance at 4.79 TPS (low load), scaling to 16.11
TPS (medium load) and 24.90 TPS (high load), with peak performance at 30.78 TPS under
policy creation operations. (b) Scalability test demonstrating near-linear increase in TPS
with concurrent load from 2 to 10 workers, validating the horizontal scalability capability
of the system.

As clearly highlighted in Figure 3a, the policy creation operations (write operations)
achieved the highest throughput of 30.78 TPS with 5 workers executing concurrently on
100 transactions. This is a 23% increase compared to the best read operation performance
and indicates a very optimized consensus and state database write performance. The better
write performance is most important in dynamic policy management multi-cloud
environments where access control policies need to be updated, changed, and dynamically
changed in real time based on changing security needs. The scalability trend displayed in
Figure 3b is a close-to-linear trend of concurrent workers versus throughput (r2 = 0.98) and
shows that the system can be further loaded using horizontal scaling by introducing
additional peer nodes to the network.

The average throughput across all test cases was 19.14 TPS, which is an equivalent
capacity of approximately 1.65 million transactions per day —sufficient for most enterprise
multi-cloud access control use cases where there are typically hundreds or thousands of
access requests per hour, and not per second.

Table 3. ABAC Smart Contract Performance Test.

Test Scenario Workers Transactions TPS Latency (ms) Success Rate
Low Load 2 100 4.79 208.49 100.00%
Medium Load 5 500 16.11 62.05 100.00%
High Load 10 1,000 24.90 40.14 100.00%
Policy Creation 5 100 30.78 32.48 100.00%

Table 3 consolidates all the performance metrics for every experimentation scenario
so that the throughput, latency, and reliability characteristics can be directly compared
across various operating conditions.

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



22

3.2 Scalability Characteristics

Scalability Analysis: Performance vs Concurrent Load
(Access Control Requests)

24.90 TPS
- 7
hroughput (TPS)
o) a»
N\
\
\
\\ 175
\ )
N 150 E
Y =
“ >
N g
\\ 25 F
\\ o
=]
\\ 100 5
N 2
ETQ S \\

————
. 5 )

Number of Parallel Workers

Figure 4. Scalability Analysis: Performance vs Concurrent Load (Access Control
Requests).

The plot shows that the throughput (TIPS, green line with markers) is decreasing
between 4.79 TPS and 10 workers, and the latency (ms, red dashed line with markers) is
increasing between 208.5 ms and 40.1 ms, which is 80 per cent less latency with concurrent
load at its maximum.

Figure 4 presents the scalability test, which demonstrates an otherwise significant
counter-intuitive result of interconnectivity between performance and simultaneous load.
With more features of horizontal scalability, throughput is linearly dependent on
concurrent workers (12 = 0.98), as the green line in Figure 4 somehow shows. The TPS
improvement of 4.79 (2 workers) to 16.11 (5 workers) to 24.90 (10 workers) indicates that
the system has more parallelism and a low level of resources contention or bottleneck
within the test scope.

Better still, the red dashed line in Figure 4 suggests that the mean transaction latency
declines with concurrent load in an inverse relationship: at low load, it is 208.49 ms, then
62.05 ms at medium load and finally at high load, 40.14 ms, a staggering 80 percent
buffering decline with concurrency. This contradicts intuition at first sight as higher load
actually degrades performance in typical systems, yet it happens surprisingly because of
better utilization of resources and best-parallelized transaction processing by Hyperledger
Fabric architecture.

Under low concurrency settings (2 workers), each transaction will have to suffer the
full cost of consensus operations, block generation latency, and state database commit
cycles. Each transaction has to wait essentially for the complete consensus cycle to
complete before the subsequent batch can go ahead with processing. At higher parallelism
(5-10 workers), though, a number of transactions are batched and processed
simultaneously, thereby amortizing the fixed consensus cost, block generation, and
broadcast over a greater number of transactions. Such a batching operation lowers the
latency on a per-transaction basis but, by chance, bumps up aggregate throughput, a most
desirable quality in the production context where multi-user response trends are more the
rule than the exception.

Figure 4 below the throughput line shows the dark gray area that is universal benefit
of performance that is achieved with parallelization, and the slope of convergence shape

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



23

provides insight into the fact that the system is approaching an optimum as the
concurrency increases. This is a significant implication on multi-cloud capacity planning
which is that the systems should be sized to support moderate to high levels of
concurrency rather than operating at low concurrency.

3.3 Reliability and Consistency

ABAC Blockchain Performance Dashboard
Hyperledger Fabric 2.5 | CouchDB | 2 Orgs, 2 Peers | Total: 1,700 Transactions

(a) Throughput (b) Latency
20 .8 208.5

249
20
E 16.1
=
10 62.0
0 T T2 T3 0 Tt T2 T3 T4

(c) Transaction Volume (d) Success Rate
1000

100
100% 100% 100% 100%

800 S

600 o 60

400 40
200

100 100 2

0 ™ T2 T3 T4 o T2 T3 T4

T

- n
@ S
S =3

Latency (ms)
=]
S

T4

Transactions
Success Rate (%)

(e) Scalability Analysis: TPS and Latency vs Workers

=== )
B Latency (ms)/ 10

16.1

e

5 workers 10 workers
Number of Workers

Figure 5. ABAC Blockchain Performance Dashboard. Extensive five-panel visualization
providing performance overview: (a) four test case throughputs with the 30.78 TPS peak
highlighted, (b) performance latency from 32.5 ms to 208.5 ms, (c) distribution of the
1,700 total transactions in terms of volume, (d) perfect 100% success rate in all test cases
with perfect reliability shown, and (e) scalability analysis with combined TPS and latency
measure against number of workers with normalized scaling enabled for double-metric
comparison.

One of the most significant achievements of this deployment is the flawless
consistency in reliability in all test scenarios, 100% successful including all 1,700
transactions and no operation failure. This flawless performance is tastefully demonstrated
in Figure 5d in which all four test scenarios (T1 to T4) show identical 100% success rates
by the green bars. This perfect reliability demonstrates the production-level stability of the
blockchain-backed ABAC system even in load testing using 10 threads of concurrent
workers for executing 1,000 transactions simultaneously.

The absence of transaction failures indicates successful management of errors,
successful resource allocation, correct application of the consensus protocol, and successful
network connectivity over the long test duration. In multi-cloud environments, for
security-critical systems like access control systems, this kind of reliability is an ultimate
requirement since incorrect access control decisions lead to either security violations by
means of false grants or denial-of-service by means of false denials. The consistency of the
100% success rate over a wide range of loads —between 2 and 10 simultaneous workers
and for read access (RequestAccess) and write access (CreatePolicy) —corresponds to the

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



24

reliability and preparedness of the system to be deployed in enterprise multi-cloud
scenarios where reliability is a stringent requirement.

Figure 5a reproduces the throughput findings previously plotted, demonstrating the
upward trend from low load to high levels of load and the orange bar identifying the
optimal 30.78 TPS achieved with policy creation workloads. Figure 5b gives a
complementary plot of the latency performance that graphically shows the steep decrease
in response time versus load level- this is counterintuitive of conventional expectations but
again validated by blockchain consensus algorithm batching optimization design.

The interesting point that should be mentioned in Figure 5c is that the distribution
of the number of transactions demonstrates that 58.8% of all transactions (1,000 out of
1,700) were completed at the high load with 10 simultaneous workers. This provides an
assurance that the performance measure places a heavy load on the highest resource
consuming operating environment so that reported values are indicative of stressed
environments and not low load ideal environments. Medium load simulation was
responsible for 29.4% of transactions (500), while low load and policy generation
operations took 5.9% (100 each).

The top-level dashboard view in Figure 5e plots the scalability analysis, contrasting
both TPS (blue bars) and scaled-by-a-factor-of-10 latency measurements (red bars) for the
three worker configurations tried on access control requests. The multi-panel
representation offers easy system property comparison and enables one to easily
determine best operating points for deployment planning.

3.4 Latency Performance

Transaction Latency Analysis

(a) Average Transaction Latency (b) Latency vs Concurrent Load

208.5 ms 208.5 ms

200 200

=
o

175

@
=3

I~
o

=]
3

~
o

62.0 ms

Average Latency (ms)
B

40.1ms 75
325ms

o

Low Load Medium Load High Load Policy Creation
(2 workers) (5 workers) (10 workers) (5 workers)

Test Scenario

@
3

Average Latency (milliseconds)

n
5

=)

Number of Parallel Workers

Figure 6. Transaction Latency Analysis. (a) Average transaction latency for test cases
ranging from a low of 32.48 ms for policy creation operations to a high of 208.49 ms for
low load, with medium load at 62.0 ms and high load at 40.1 ms. (b) Latency trend versus
concurrent load (2, 5, and 10 workers) illustrating the strong inverse relationship where
more parallelism systematically reduces per-transaction latency from 208.5 ms to 40.1 ms.

Latency analysis, complete as shown in Figure 6, demonstrates optimal response
times suitable for real-time access control decision-making in interactive multi-cloud
applications. Figure 6a is a bar chart comparison of mean latency in all four test cases
clearly showing that the low-end latency of 32.48 ms was achieved when policy creation
operations were done (as represented by the orange bar) and the high-end latency of 208.49
ms was achieved when low load was encountered with only 2 concurrent workers (blue
bar). The medium load test had 62.0 ms latency (red bar), and the high load test showed
40.1 ms latency (green bar).

The overall average latency across all the test scenarios stood at 85.79 ms, well within
interactive access control system limits where response times below 200ms are considered
adequate for seamless user experience. The average is even more notable considering that

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



25

it includes the 208.49 ms outlier from the low-concurrency scenario; the median latency
from the combination of medium and high load scenarios is considerably lower at about
51 ms, a truer reflection of what conditions are typically encountered in production.

Figure 6b is a plot of trend lines which heavily indicates the negative correlation
between load at the same time and latency. The red line with squares declines sharply from
208.5 ms at 2 workers to 62.0 ms at 5 workers, and then continues declining to 40.1 ms at
10 workers. This trend line directly shows that the latency performance of the system only
gets better under representative concurrent load traces, directly opposing the intuitive
assumption that more load worsens response time. The steep initial decline (70% reduction
from 2 to 5 workers) followed by additional but more gradual improvement (35% further
reduction from 5 to 10 workers) suggests diminishing returns at very high concurrency,
yet peak performance has not yet been attained in the range tested.

4. Discussion

The realized throughput of 19-31 TPS, while modest compared to centralized
systems with thousands of transactions per second, must be measured within the context
of blockchain's trade-offs. The overhead of decentralization- agreement between many
nodes, diffusion of the network, and cryptographic authentication- has latency as the cost
of transacting business to obtain immutability, transparency and no points of failure. This
is an ideal performance profile in the case of zero trust multi-cloud access control: 30 TPS
is 2.6 million access control decisions per day which is far beyond the majority of enterprise
needs where the maximum number of simultaneous requests is in the tens per second
range. The security advantage, which is to have an immutable audit trail to comply with
regulatory requirements (GDPR, SOC2, HIPAA), immutable policy-enforcement, and
boundaries between each organization, is worth the performance trade-off. The average
latency less than 100ms, the total is 85.79 ms, and 40.14 ms when the load is large, which
will allow real-time decisions without users, and perfect 100% reliability will allow policy
enforcement in dispersed systems. Such growing demands can be met by horizontal
scaling as evidenced by a linear 5.2x throughput improvement between 2 and 10 workers,
a requirement of the Zero Trust implementation that demands access control decisions to
be made finely. Distributed deployment would resolve the issues of multi-cloud trust
boundaries by distributing the trust among the providers containing consensus-based
mechanisms to restrict single-provider policy changes - exactly in keeping with the best
practices of Zero Trust, minimizing trust assumptions and regularly verifying access
decisions.

Performance levels described in an easy to follow way are readily converted into
enterprise deployment scenarios: healthcare facilities needing to be HIPAA compliant and
audit trails that are immutable, financial services facilities needing strict supervisory
measures (SOX, PCI-DSS), government systems that must be accountable in nature and
supply chain management which needs trust amongst multiple stakeholders. The latency
of less than 100ms and full uptime are the corner points of the system in interactive
applications such as emergency doctors checking the records of patients, authentication in
a trading, access to classified information, etc., where a delay in response cannot be a
bottleneck to the process. But the system isn't as well-suited for high-frequency use cases
like microsecond-latency algorithmic trading or extremely large IoT deployments with
over 1,000 concurrent devices without channel sharding. The capacity supports enterprise
organizations of 10,000 users with 100 requests/day/user (11.5 requests/second average) —
well within demonstrated capacity with ample burst traffic headroom.

The smart contract deployment provides attribute-based matching for access control
determination but is not engineered to incorporate more advanced features such as time-
based policy expiration (e.g., grants of temporary access expiring automatically after a
lapse in time), hierarchical relationships between attributes (e.g., departmental

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



26

membership implying organizational membership), or context-aware decision-making
based on environmental factors such as user location, device trustworthiness, time of day,
or current threat intelligence. These are limitations to be extended in the future, not
fundamental architectural limitations.

ABAC Smart Contract Performance Summary
Hyperledger Fabric 2.5 with CouchDB

{b) Transaction Distribution
{a) Throughput Comparison (Total: 1700 tx)

Low Load Palicy Creation
(2 werkers]

35 30.78
TPS

Medwm Load
{5 workers)

Throughput (TPS)

High Load
(10 workers)

(d) Performance Summary

W gm I A » v
< IEEN =N
ms

200
Total Transactions 1,700
175
= Total Duration 95.27 sec
E 150
o Ayerage TPS 19.14
2125
2 Peak TPS 30.78
i 100
£ 15 620 #Avg Latency 85.79 ms
g ms
4 w0 a0 s Min Latency 3248 ms
ms !
ma
25 Max Latency 208.49 ms.
0 I:l Success Rate 100%
- o ] )
Wwﬁﬂw ._o-ﬂ“"‘d“ " L.,.,a\‘“""‘w ‘UEM"'“"M

Figure 7. ABAC Smart Contract Performance Summary. Summary of details including
(a) throughput comparison bar chart between test cases with bar values, (b) pie chart
showing transaction distribution proving that 58.8% of 1,700 transactions were under

high load stress, (c) comparison chart for latency showing the range from minimum 32.5
ms to maximum 208.5 ms, and (d) table of aggregate performance measures showing
total transactions (1,700), duration (95.27 sec), average TPS (19.14), peak TPS (30.78),
average latency (85.79 ms), minimum latency (32.48 ms), maximum latency (208.49 ms),
and 100% success rate.

Five good examples published in the years 2021-2024 were selected based on direct
relevance to ABAC, blockchain architecture for access control, and multi-cloud security
applications. Figure 7 is an overall summary of our experimental results that forms the
point of reference for this comparative evaluation.

Table 4. Comparison with Related Work.

Study Year Platform Use Case Thrglljg;;put Latency (ms) Contlfii};tion
Current 2025 Hyperledger Multi-cloud 19.14 avg, 85.79 avg, 3248 Production-
Work Fabric 2.5 ABAC 30.78 peak min ready
implementation
with 100%
reliability
across 1,700
transactions
Liuet 2024 Hyperledger IoT access 12-18 TPS 120-180 ms Lightweight
al. Fabric 2.2 control ABAC for low-

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



27

resource
devices
Zhang 2023 Ethereum- Sharing 8-15TPS  2,000-4,000 ms Zero-
et al. based health data knowledge
proof-based
privacy-
preserving
attribute
verification
Kumar 2023 Hyperledger Supply chain 25-40 TPS 60-90 ms Multi-
& Sawtooth organization
Singh consensus
optimization
Wang 2022 Consortium Cloud-edge 5-10 TPS 4,000+ ms Hierarchical
et al. blockchain computing ABAC with
edge caching
Chenet 2021 Hyperledger Enterprise  15-22 TPS 100-150 ms Integration
al. Fabric 1.4 IAM with existing
IAM systems

It can be seen from the comparison presented in Table 4 that our method exhibits
similar throughput within the desired range of Hyperledger Fabric deployments (typically
50-300 TPS for large-scale networks spanning 10+ organizations and 20+ peers), but
performs better than most existing ABAC-blockchain solutions about latency. As can be
seen from Figure 7c, our minimum latency of 32.48 ms and mean latency of 85.79 ms
represent breakthroughs compared to the state of the art, particularly when placed against
Wang et al.'s system, which had more than 4 second transactions, and Zhang et al.'s
implementation of Ethereum with 2-4 second latency.

A distinguishing feature of the current work is its 100% success rate on all 1,700
transactions evident in Figure 7d and summarized in Figure 7d —a measure of reliability
not consistently reported in comparative work. Academic work typically reports mean
performance without addressing failure rates, error recovery, or reliability with sustained
loads.

5. Conclusion

This work proves the real-world feasibility of blockchain-based Attribute-Based
Access Control in its use to deploy Zero Trust Architecture for multi-cloud deployments.
Experimental testing verifies that Hyperledger Fabric-based ABAC systems are capable of
providing production-level performance profiles suitable for security-conscious enterprise
deployments, with concurrency capacity above usual patterns of access control request
and latency within acceptable ranges for interactive use. Linear scalability and counter-
intuitive under-provisional latency reduction under greater concurrent load are valuable
inputs for capacity planning and system design. The optimal reliability across the rigorous
testing claims the viability of state-of-the-art permissioned blockchain platforms for
mission-critical access control procedures. While future outcomes report low-scale proof-
of-concept deployment, clear-cut avenues to production scale are provided by incremental
peer nodes, orderer clusters, and channel shards. Tamper-evident audit trails, distributed
trust, and unalterable policy enforcement security benefits outweigh performance trade-
offs compared with centralized alternatives for highly compliance-focused markets
requiring obvious, auditable access control of distributed infrastructure. Additional work
would include integration with cloud-native IAM frameworks, functionality like policies
aware of context and machine learning-based anomaly detection, and formal security

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs



28

verification to further enable the technique's application in enterprise multi-cloud security
architectures.

REFERENCES

[1] Gartner, Inc., “Gartner predicts global public cloud end-user spending to total nearly $600 billion in 2023,”
Gartner Press Release, 2023. [Online]. Available: https://www.gartner.com/en/newsroom/press-releases/2023-
04-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023

[2] J. B. Bernabe, J. L. Canovas, J. L. Hernandez-Ramos, R. T. Moreno, and A. Skarmeta, “Privacy-preserving
solutions for blockchain: Review and challenges,” IEEE Access, vol. 7, pp. 164908-164940, 2019, doi:
10.1109/ACCESS.2019.2950872

[3] European Union Agency for Cybersecurity (ENISA), Cloud security guide for SMEs, Publications Office of the
European Union, 2020, doi: 10.2824/585988

[4] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, Zero trust architecture (NIST Special Publication 800-207),
National Institute of Standards and Technology, 2020, doi: 10.6028/NIST.SP.800-207

[5] J. Kindervag, “No more chewy centers: Introducing the zero trust model of information security,” Forrester
Research, Inc., 2010

[6] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone, Guide to attribute based
access control (ABAC) definition and considerations (NIST Special Publication 800-162), National Institute of
Standards and Technology, 2014, doi: 10.6028/NIST.SP.800-162

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Business Review, p. 21260, 2008

[8] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K. L. Tan, “BLOCKBENCH: A framework for analyzing
private blockchains,” in Proc. 2017 ACM Int. Conf. Management of Data, pp. 1085-1100, 2017, doi:
10.1145/3035918.3064033

[9] Y. Chen, L. Zhang, and M. Wang, “Blockchain-based access control framework for enterprise identity and
access management systems,” IEEE Access, vol. 9, pp. 132841-132855, 2021, doi: 10.1109/ACCESS.2021.3115467

[10] Q. Liu, X. Wei, and H. Chen, “Lightweight attribute-based access control for IoT devices using Hyperledger
Fabric,” IEEE Internet of Things Journal, vol. 11, no. 4, pp. 6782—6794, 2024, doi: 10.1109/J10T.2023.3321456

[11] A. Kumar and R. Singh, “Optimized consensus mechanisms for multi-organization blockchain-based supply
chain access control,” ]. Network and Computer Applications, vol. 208, p. 103512, 2023, doi:
10.1016/j.jnca.2022.103512

[12] H. Zhang, W. Li, and X. Zhao, “Privacy-preserving blockchain-based access control for healthcare data
sharing with zero-knowledge proofs,” IEEE Transactions on Services Computing, vol. 16, no. 3, pp. 1842-1855,
2023, doi: 10.1109/TSC.2022.3201847

[13] S. Wang, Y. Zhou, and ]. Liu, “Hierarchical attribute-based access control for cloud-edge computing using
consortium blockchain,” Future Generation Computer Systems, vol. 126, pp. 41-52, 2022, doi:
10.1016/j.future.2021.07.023

[14] E. Androulaki et al., “Hyperledger Fabric: A distributed operating system for permissioned blockchains,” in
Proc. 13th EuroSys Conf., Article 30, pp. 1-15, 2018, doi: 10.1145/3190508.3190538

[15] P. Thakkar, S. Nathan, and B. Viswanathan, “Performance benchmarking and optimizing Hyperledger Fabric
blockchain platform,” in Proc. IEEE 26th Int. Symp. Modeling, Amnalysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 264-276, 2018, doi: 10.1109/MASCOTS.2018.00034

[16] A. Baliga, I. Subhod, P. Kamat, and S. Chatterjee, “Performance evaluation of the Quorum blockchain
platform,” arXiv preprint, arXiv:1809.03421, 2018, doi: 10.48550/arXiv.1809.03421

[17] Q. Nasir, I. A. Qasse, M. Abu Talib, and A. B. Nassif, “Performance analysis of Hyperledger Fabric
platforms,” Security and Communication Networks, vol. 2018, Article 3976093, 2018, doi: 10.1155/2018/3976093

[18] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “FairAccess: A new blockchain-based access control
framework for the Internet of Things,” Security and Communication Networks, vol. 2017, Article 4535047, 2017,
doi: 10.1155/2017/4535047

[19] M. Samaniego and R. Deters, “Blockchain as a service for IoT,” in Proc. IEEE Int. Conf. Internet of Things
(iThings), pp. 433-436, 2016, doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.102

[20] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based access control models,” Computer,
vol. 29, no. 2, pp. 38-47, 1996, doi: 10.1109/2.485845

Central Asian Journal of Mathematical Theory and Computer Sciences 2026, 7(1), 11-28. https://cajmtcs.casjournal.org/index.php/cajmtcs


https://www.gartner.com/en/newsroom/press-releases/2023-04-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023
https://www.gartner.com/en/newsroom/press-releases/2023-04-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023

