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Abstract: The Stokes model is an idealized, canonical model of incompressible viscous fluid flow
and appears in many types of applications, from microfluidics to geophysical simulations. AFEM
holds best promise for optimal efficiency but demands also reliable error estimators and proven
convergence. More recent substitutes, i.e., locally adaptive penalty methods, relax the
incompressibility constraint to ease treatment but lose physical fidelity by allowing non-zero velocity
divergence, constituting an essential deterrent to mass-sensitive applications. We present an original
adaptive FEM algorithm based on an inexact but residual-based a posteriori error estimator based
on Dérfler marking and recent vertex bisection refinement. We describe a new method guaranteeing
inf-sup stability for any adaptive mesh, based on Taylor-Hood (P>—P1) element pair. We give strong
guarantees of linear contraction and quasi-optimal complexity showing that the algorithm converges
at the optimal algebraic rate in terms of degrees of freedom. We tested the method on two canonical
benchmarks, a smooth manufactured solution over the unit square, and the singular L-shaped
domain. We evaluated the error in energy norm, order of convergence, effectivity index, and number
of degrees of freedom, and contrasted these against uniform refinement and latest developments in
adaptive techniques like the penalty technique by Fang. The algorithm exhibited (optimal) second-
order convergence on the smooth problem, and optimal first-order convergence (rate 1.0) on the L-
shaped domain, in which uniform refinement saturated (with rate 0.5<0.5). The adaptive scheme
resulted in 50% error reduction of the entire error compared to uniform refinement at 2,000 DOFs
and dominated the penalty scheme [14] of Fang (error 1.12el. vs 1, respectively). 30e-1). The error
estimator was in all instances evidently reliable (effectivity index ® = 2.0). Importantly, our technique
enforces the constraint V-uh =0 in an exact sense and thereby preserves mass — a desirable property
over penalty schemes. This paper presents an effective and largely inexpensive adaptive finite
element method (AFEM) of the Stokes equations at optimal accuracy at very little computational
expense while under the condition of minimizing inequalities. We demonstrate this interplay
between engineering and mathematics through an integration of shown error estimation, stable
refinement, and formal convergence analysis. The adaptive penalty methods can't impose strict
incompressibility, and our algorithm achieves an entirely new level of fidelity for adaptive flow
simulations. It becomes evident and potential to extend to 3D and time-dependent Navier-Stokes
problems.

Keywords: Adaptive finite elements, Stokes equations, A posteriori error estimation, Quasi-optimal
convergence, Mass conservation

1. Introduction

The Stokes equations are one of the cornerstones of mathematical physics and
computational fluid dynamics and an elementary model of finite element computation
governing weak flow of incompressible Newtonian fluids traveling at small Reynolds
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number. They are obtained as the zero-Reynolds-number limiting case of the Navier-
Stokes equation, and take central roles in various physical and engineering problems
involving microfluidics, biomechanics, geophysical flows, polymer processing, lubrication
theory [1]. Their even numerical approximation raises both theoretical and practical
difficulties, especially in geometrically complex domains or in encountering singular
solutions, as it must account for a pair of elliptic partial differential equations for
momentum equilibrium and mass conservation as one typically encounters an
accompanying calculus of variations saddle-point problem

Very few analytical results on the Stokes system exist and they are usually restricted
to simple geometries with often very well-posed boundary conditions. Therefore, it is not
an academic exercise to create reliable, valid and effective numerical algorithms for
approximation of such models but a necessity due to application in practice. The finite-
element method (FEM) has proven to be the most powerful paradigm for discretization of
such problems, because it is geometrically flexible, based on sound mathematics and
capable of dealing with complex boundary conditions [2]. The traditional FEM approach
using global mesh refinement for better solution usually cannot be employed efficiently.
This inefficiency is due to the fact that the discrepancy in the approximate solution way
almost never be uniformly distributed around the computational domain. If the solution
is smooth in parts of the domain, uniform refinement may waste computational resources
by generating more degrees-of-freedom than place-based refinement. In contrast, close to
inclining zones, boundary layers or geometric singularities (e.g., re-entrants), uniform
refinement often unabl ely tessellates the solution in a satisfactory manner unless one
agrees with an increase of computational cost that is not always justified [3].

To overcome these limitations, adaptive finite element methods (AFEM) have been
built and optimized in recent decades. The AFEM's underlying philosophy is simple, yet
powerful - rather than minutely grinding the mesh throughout, at points of most
numerical error, degrees of freedom congregate and locally (with a posteriori estimates)
refine computational mesh. This specific plan has room for optimal accuracy at best
computer cost, maximizing computational simulation efficiency. AFEM's overall success
depends on these two essential ingredients: (1) an efficient and good a posteriori error
estimator, able to estimate, after computational solution, a local error, (2) reliable
refinement strategy based on this latter to adapt mesh in keeping stability and convergence
from discretization underneath [4].

In spite of the developments achieved, it remains an open challenging problem to build
an AFEM for Stokes equations with arguments, proving at the same time stability and
convergence, and local optimality, as well. The two principal challenges have multi-
faceted features. At one level, it is not an easy matter to formulate an error estimator for
the coupled velocity-pressure scheme, being trustworthy in the sense of providing an
guaranteed upper estimate, on the true error, and at least efficiency in the sense we also
have an guaranteed lower estimate, apart from higher order terms. Secondly, to recover
an accurate pressure approximation, based on velocity computations, without being
penalized by spurious free pressure modes, responsible for polluted solutions, one needs
to have, at every adaptively refined mesh, an inf-sup stability condition to be fulfilled for
the corresponding discrete velocity and pressure approximations [5].

The third, and possibly the most crucial, ingredient is to demonstrate that the adaptive
scheme in itself leads to zero error at an optimal rate in terms of degrees of freedom — this
is referred as quasi-optimal computational complexity, see e.g. [6].

This work is driven by the desire to close the gap between theoretical and practical
performance of adaptive methods for the numerical solution of the stokes equations.
Although there exist several adaptive strategies such as nonconforming FEM, least-
squares FEM [7] or for example the Virtual Element Method (VEM) [8], each of them comes
with a certain number of compromises between simplicity of optimization
implementation, theoretical guarantees and physical preciseness in the solution. For
example, the locally adaptive penalty strategy introduced by Fang [9] provides a new
direction to update the penalty parameter ¢ based on the data field to relax the
incompressibility condition, it fundamentally changes character of problem (3—4), leading
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an approximate-divergence-free velocity fields instead of divergence free-velocity field for
(3-4) and that could be a potential disadvantage in applications needed truly mass
conservation [10].

The main aim of the present work is thus to develop, study and validate a new adaptive
finite element scheme tailored for these problems. Specifically, our contributions are
threefold:

We construct a residual-type robust a posteriori error estimate tailored for the Stokes
system, which successfully accounts for the error in both velocity and pressure.

We incorporate this estimator into a full adaptive loop (SOLVE — ESTIMATE —
MARK — REFINE) with a theoretically motivated marking strategy (e.g., Dorfler marking)
and refinement algorithm (e.g., newest vertex bisection) ensuring mesh regularity and inf-
sup stability.

We offer a complete theoretical analysis that shows the proposed algorithm is linearly
convergent with quasi-optimal computation complexity. We then thoroughly verify these
theoretical claims by a wide variety of numerical experiments performed on the
benchmark problems including the canonical L-shaped domain with a corner singularity.
The paper fulfills these goals by providing a theoretically valid and practically applicable
framework for the numerical simulation of incompressible viscous flows, thus opening it
up to more complex, unsteady, three-dimensional problems.

Literature Review

For the last more than 50 years, the Stokes equations which model the time-
independent incompressible viscous flow have drawn much attention, as the numerical
approximation of the equations forms the basis of many computational fluid dynamics
(CFD) methods in capturing viscous flow. Despite their rigorous mathematical
background, classical finite element methods (FEM) are practically inefficient for many
computational problems with local behaviour (for instance, boundary layers, steep
gradients, or singular geometries). This is the case when a uniform mesh refinement results
in an increase in degrees of freedom by orders of magnitudes, while gain in global accuracy
is insignificant [11]. This intrinsic inefficiency has led to the design of adaptive strategies
to locally allocate computational resources according to the predicted local error.

Adaptive Finite Element Methods (AFEM) can be considered an emerging trend in
numerical simulations, which allow us to attain an optimal accuracy level at minimum
computational cost. The nucleus of any AFEM is an a posteriori error estimator, which
must be able to safely detect regions of high error in order to initiate refinement of the
computational mesh. Considering the case of the Stokes equations, it is extremely difficult
to build such an estimator, as it happens to have an inherent saddle-point structure and it
is wished to control errors in both the velocity field and in the pressure field at the same
time [12].

Theoretical results have been achieved in the last 20 years, leading to robust
convergence as well as to optimality guaranteeing schemes.

A well-known and pioneering work in this direction is due to Becker and Mao, which
ensures quasi-optimality of adaptive nonconforming finite element methods for Stokes
equations. They derived a contraction property of the joint error and estimator, yielding
linear convergence and optimal computational complexity, providing a framework for
future work. Carstensen, Peterseim, and Rabus later improved and generalised this work
by establishing an optimal adaptive nonconforming FEM and by deriving sharp estimates
for efficiency of a residual-based error estimator.

Another choice consists of Bringmann and Carstensen's adaptive least-squares finite
element method (LSFEM) [13]. As an example, LSFEM transforms the Stokes system into
a minimization one to find symmetric, positive-definite linear systems, which can be
solved in an iterative fashion in an efficacious way. It is shown by authors that their
adaptive LSFEM possesses optimal rates of convergence for any degree of polynomial, and
this makes it an extremely adaptable setting. The series of elements of higher order or of
enrichment spaces, in order to achieve the requested accuracy, makes the methodology
more burdensome in terms of practice and computational realization, though [14].
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More recently, the Virtual Element Method (VEM) has been an effective methodology
to open the way to general polygonal and polyhedral meshes, reaching increased
geometric versatility. Manzini and Mazzia have proposed in an adaptive VEM for the
Stokes problems and also an accurate a posteriori error analysis and mesh adaptivity
strategy. Their work shows that the method is applicable in complicated geometries and
is capable of recovering optimal convergence rates. Nevertheless, it can be hard to gain
popularity due to the abstractness of the virtual element space and to the need to generate
suitable error estimators in a fairly more involved manner.

Fang [6] suggests a localized adaptive penalty approach to the Navier-Stokes
equations, inspired by an earlier adaptive formulation of Xie for the Stokes problem, which
operates on a very different adaptive philosophy. This approach does not adapt the mesh,
but adapts the penalty parameter ¢ for each element. Choosing a small value for parameter
¢ in regions where the divergence of the discrete velocity field V-uy is large, relaxing the
incompressibility constraint only where hard to enforce. Fang benefits from the method's
unconditional stable property and gives error estimates for it, and further confirms the
theoretical soundness of the method by numerical tests. Although this approach is novel
and computationally enticing, it has a significant physical flaw that its flow field is not
strictly divergence-free, which can be unphysical for exact mass conservation applications
such as in microfluidics or long-time simulations [15].

You can find a summary of these key methods in the comparative table below on the
main adaptive strategy they rely on, their theoretical guarantees, strengths, and
weaknesses.

Table 1. Comparative Analysis of Adaptive Numerical Methods for the Stokes Equations

. Key
Adapt Advant
Reference  Method APUVE " Theoretical VAN | imitations
Strategy
Results
formi
Quasi- Proven Nonconformin
Mesh optimal optimalit & clements
Becker & Nonconformin . p p Y complicate
Refinemen convergenc  Strong . .
Mao [1] g FEM ; . implementatio
t e, Linear theoretical
. . n and post-
contraction  foundation .
processing
Optimal Sharp error
. Mesh convergenc  control, Similar
Carstense  Nonconformin . . . .
Refinemen e, Reliable & Establishe  complexity to
netal. [2] gFEM ..
t efficient d [1]
estimator framework
. Optimal Syrr}r.netnc May require
Bringman positive- .
Mesh convergenc .. enriched
n & Least-Squares Refinemen e for an definite spaces, Higher
Carstense ~ FEM (LSFEM) ol nomialy system, cgm ;tatifnal
n [3], [4] POy Flexible P
order cost per DOF
order
1
. . Handles Comp ex'
A posteriori . construction of
error arbitrary virtual spaces
. Virtual Mesh . polygonal b
Manzini & . analysis, and projectors,
Mazzia [5] Element Refinemen Optimal meshes, Newer method
Method (VEM) t P High .
rates on geometric with less
1 tablished
polygons flexibility establishe

software

From this review, we identify a clear gap in the research landscape: although many
adaptive strategies exist they either suffer from a lack of physical fidelity in their
approximation of the incompressibility constraint (V - u=0), or lack proofs of convergence
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and optimality (theoretical polynomial-time approaches), or are simply too complex to be
practical (non-constant time implementations). Although the penalty method introduced
by Fang is mathematically stable and innovative, the method trades physical fidelity for
algorithm simplicity. Conversely, mesh-adaptive techniques as in and maintain the
physics but may also be more complicated to implement or limited in their flexibility. In
this paper, we propose an algorithm that seek proper stabilization to then build
conforming, mesh adaptive FEM systematically: The resulting method is quasi-optimal
and stable theoretically with some practical and physical accuracy guaranteed (Table 1).

2. Materials and Methods

The Continuous Stokes Problem

Let Q c R? be a bounded, polygonal domain with Lipschitz boundary 9. The steady-
state Stokes equations for an incompressible, viscous Newtonian fluid are given by the
following system:

—vAu+Vp=f in(,
V-u=0 inQ,

where u: Q — R? denotes the velocity field, p: Q) - R the pressure, v > 0 the constant
kinematic viscosity, and f € [L?(Q)]* a given body force. For simplicity, we impose
homogeneous Dirichlet boundary conditions on the velocity:

u=0 on 9.

The natural function spaces for the weak formulation are the velocity space V =
[H}(Q)]* and the pressure space Q = L3(€), where L}(Q) is the space of square-integrable
functions with zero mean over ().

The weak formulation of the problem is to find (u,p) € V X Q such that:
a(w,v) +b(v,p) =(f,v) Vvey,
b(u,q)=0 VvqeQ,
where the bilinear forms a: VXV - Rand b:V X Q - R are defined as:

a(u,v) = vjVu:Vvdx,
Q

bv.a) =~ [ 4 (- vydx,
Q
and the linear functional (f, v) is given by:
(f,v) = ff-vdx.
Q

The well-posedness of this problem is guaranteed by the Lax-Milgram theorem and the
inf-sup (Ladyzhenskaya-Babuska-Brezzi) condition, which ensures the existence of a
constant § > 0 such that:
sup b(v,q)
vewn(oy Il v Iy
Finite Element Discretization
Let 7, be a shape-regular, conforming triangulation of Q into triangles T, where h =

=>Blqll, Vqc€EQ.

maxreg, by and hy is the diameter of element T. We define discrete finite element spaces
V, € Vand @ c Q. For this work, we employ the classical Taylor-Hood (P>—P1) element
pair, where:
LV ={v, €[C°@I N Vivylr € [R(T)]* VT €T},
2. Qn={q €C°(D)NQ:qulr € P(T) VT ETH}
This pair is known to satisfy the discrete inf-sup condition uniformly with respect to
the mesh size h [1]:
There exists a constant §; > 0, independent of h, such that:
b @) 2 Pnllqnllo  Vqn € Qp.
vrevp\(03 I Vi Iy
The discrete problem is to find (u,, p,) € V, X Qp, such that:
a(up, V) + b(Vh,pr) = (£,vn) Vv, €V,
b(up,qn) =0 Vqy € Qp.
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Residual-Based A Posteriori Error Estimator
Following the framework established in and we define a residual-based a posteriori error
estimator. For any element T € 7}, the local error indicator 1y is given by:
Nt =NRr + Njr +Nbr

where the three components represent:

1. Element residual: 3, = h% || f + vAu, — Vp, 37,

2. Edge jump residual: nj,; = %ZEGETQEQ he | [[vVu, — pu1]] - m 1135,

3. Divergence residual: n3  =Il V- uy lI3 7.

Here, £; is the set of edges of element T, &g is the set of interior edges, hg is the length
of edge E, n is the unit normal vector, and [[-]] denotes the jump across an interior edge.

The global error estimator is then defined as:
1/2

Mh = Z n#
TET)
This estimator is known to be both reliable and efficient. Specifically, there exist positive
constants C,; and Cog, independent of the mesh size, such that:

Cor(lu—up 12 +ll p —pp 112) <12 < Coq(l u —up, 112 +1l p — pp, 13+ 052 (£, T3)),
where osc(f, 7;,) is the data oscillation term, defined as osc*(f, ;) = Yres;, h# I £ — £ 1§ 7,
with f; being the L*-projection of f onto piecewise constants. The oscillation term is
typically of higher order and becomes negligible as the mesh is refined.

The Adaptive Algorithm

The adaptive finite element method (AFEM) follows the standard iterative loop: SOLVE

— ESTIMATE — MARK — REFINE.

1. SOLVE: On the current mesh T;, compute the discrete solution (u,py) € Vi X Q@ by
solving the linear system (8)—(9).

2. ESTIMATE: Compute the local error indicators {ny y}res, using (10).

3. MARK: Select a subset M}, © J;, of elements for refinement using the Doérfler marking
strategy. Given a marking parameter 6 € (0,1], choose M, as a minimal set satisfying:

REFINE: Generate a new, conforming mesh 7, by refining all elements in M}, using
newest vertex bisection (NVB). This refinement strategy ensures that the resulting mesh
remains shape-regular and that the number of elements added is proportional to the
number of marked elements.

Theoretical Analysis: Stability, Convergence, and Optimality

We now present the key theoretical results for the proposed adaptive algorithm. The
analysis follows the framework developed in [2] and [3].

Theorem 1 (Discrete Stability). For every mesh T, generated by the adaptive algorithm, the
discrete inf-sup condition (7) holds with a constant By, that is independent of k. Consequently, the
discrete problem (8)—(9) has a unique solution (W, py).

Proof. The Taylor-Hood (P>—P1) element pair is known to satisfy the inf-sup condition
uniformly on any shape-regular triangulation [1]. Since the newest vertex bisection
refinement strategy preserves shape-regularity, the constant 5, in (7) remains bounded
away from zero for all k. This guarantees the well-posedness of the discrete problem at
every iteration.

Theorem 2 (Contraction). Let {T;, (W, px), N }ro be the sequence of meshes, discrete
solutions, and global error estimators generated by the AFEM loop with Dorfler marking parameter
0 € (0,1]. Then, there exist constants 0 < p < 1 and y > 0 such that for all k = 0, the following
contraction property holds:

T — ey 17 +1P = Prss 13+ ¥7ices < p? (Ul w = 17 +1 p — pe I3+ vk
Proof (Sketch). The full proof is technical and can be found in [2] and [3]. The core idea is to
establish a perturbed contraction by combining three key ingredients: (i) the Galerkin
orthogonality of the error, (ii) the reliability and discrete reliability of the error estimator,
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and (iii) the reduction of the estimator on refined elements. The Déorfler marking ensures
that a sufficient portion of the total error is reduced in each step. By carefully balancing the
error reduction against the possible increase in the estimator on unrefined elements, one
can show that the combined “quasi-error” (error plus a scaled estimator) contracts by a
factor p < 1.

Theorem 3 (Quasi-Optimal Convergence Rate). Let N, = dim(V}) + dim(Qy,) denote
the total number of degrees of freedom in the k-th mesh. The sequence of errors satisfies:

(hu = 13+l p —py 13)Y? < N2,

where C > 0 is a constant independent of k. This means the algorithm converges at the optimal
algebraic rate.
Proof (Sketch). This result, established in [2], follows from the contraction theorem and the
theory of nonlinear approximation. The Dorfler marking strategy ensures that the error is
reduced at a rate proportional to the best possible approximation error achievable with N,
degrees of freedom. The quasi-optimality is a direct consequence of the algorithm’s ability
to mimic the optimal mesh distribution for the given problem.
Numerical Experiments

Implementation Framework

The proposed adaptive finite element algorithm was implemented in MATLAB
R2023b. The core computational components are as follows:

1. Finite Element Spaces: We employed the conforming Taylor-Hood (P>—P1)
element pair for velocity and pressure, respectively. This choice ensures discrete
inf-sup stability on all meshes generated by the refinement procedure.

2. Mesh Generation and Refinement: Initial meshes were generated using the
distmesh toolbox. Adaptive refinement was performed using newest vertex
bisection (NVB), implemented via the refine function in the PDE Toolbox, which
guarantees shape-regularity and conformity of the mesh hierarchy.

3. Linear Solver: For the discrete saddle-point system (8)—(9), we used MATLAB’s
direct sparse solver midivide (backslash operator) for problems with fewer than
50,000 degrees of freedom (DOFs). For larger problems, we employed the GMRES
iterative solver with an ILU(0) preconditioner, with a tolerance of le-10 and a
maximum of 1000 iterations.

4. Adaptive Loop Parameters: The Dorfler marking parameter was fixed at 8 = 0.3,
a value commonly used in the literature that balances aggressive refinement with
computational stability. The adaptive loop was terminated after 10 refinement
steps or when the total DOFs exceeded 50,000.

5. Error Measurement: The exact errors were computed in the following norms:

a. Velocity error in the H'-seminorm: E, = |u—u|, = (fﬂ |V(u—
1/2

uy)|?dx) ",
b. Pressure error in the L?>-norm: E, =l p — py, llo,
c. Total energy error: E = (E2 + Eﬁ)l/z.
6. Effectivity Index: To assess the quality of the a posteriori error estimator 7, we

computed the effectivity index:

Mn
0=—
E

An index close to 1 indicates an efficient estimator, while ® > 1 indicates reliability (the
estimator overestimates the true error).
Benchmark Test Problems

Two canonical test problems were selected to evaluate the algorithm’s performance
under different conditions: one with a smooth solution to verify optimal rates, and one
with a geometric singularity to demonstrate the adaptive method’s superiority.
Problem 1: Smooth Solution on the Unit Square
Let Q= (0,1)>. We manufacture a smooth, divergence-free velocity field and
corresponding pressure:
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3 2
w3 = | e - ety 1)) PEsY) = 10@x = D@2y = D).

The body force f is computed analytically by substituting (u,p) into the momentum
equation (1) with v = 1. Since the solution is smooth and globally €, uniform refinement
is expected to achieve optimal convergence, providing a baseline for the adaptive method.
Problem 2: L-Shaped Domain with Corner Singularity
LetQ = (—1,1)?\[0,1) X (—1,0], an L-shaped domain with a re-entrant corner of angle 37 /2
at the origin. The exact solution, derived in polar coordinates (r, ¢), exhibits a singular

gradient:
_ 2 [+ Dsin(@)(9) + cos(@)y'(¢)
w0 = [ Scontprier + s o) | PO
(DY) " ()
1-1 ‘
where () = sin((1 + 1)) =52 — cos((1 + D) — sin((1 — D) =52 + cos((1 —

A)@), w = 3n/2,and 1 = 0.5444837367 is the smallest positive root of sin(Aw) + Asin(w) =
0. The body force is f = 0 and v = 1. This problem is a standard benchmark for testing the
ability of adaptive methods to resolve singularities.
Error Analysis and Comparative Results

The performance of the adaptive finite element method (AFEM) is compared against
uniform finite element method (UFEM) refinement. Convergence rates are computed

using the formula:

_ log(Ey+1/Ey)
~ 1og(DOF,./DOFy1)’
where E}, is the error at the k-th refinement level.
Results for Problem 1 (Smooth Solution)
As expected, both UFEM and AFEM achieve the optimal second-order convergence
rate in the energy norm, since the P; element for velocity has an interpolation error of 0 (h?)

Rate

in H'. The adaptive method does not provide an advantage here, as the error is uniformly
distributed, and the marking strategy refines the mesh globally (Table 2).
Table 2. Convergence History for the Smooth Solution Problem (P,-P; Elements)
Method DOFs E, Rate E, Rate E 0
UFEM 162 123e2 — 8.76e-3 — 1.51e-2 1.82
UFEM 642 3.08e-3 2.00 2.20e-3 2.00 3.79e-3 1.81
UFEM 2562 7.70e-4 2.00 5.50e-4 2.00 9.48e-4 1.80
AFEM 162 123e2 — 8.76e-3 — 1.51e-2 1.82
AFEM 587 3.09¢-3 2.01 22le-3 2.00 3.80e-3 1.81
AFEM 2211 7.72e-4 2.00 5.5le-4 2.00 9.50e-4 1.80

The effectivity index ® ~ 1.8 confirms that the residual-based estimator is reliable and
provides a consistent, albeit slightly conservative, upper bound on the true error.
Results for Problem 2 (L-Shaped Domain)

This problem starkly highlights the power of adaptivity. The singularity at the re-
entrant corner severely degrades the performance of uniform refinement, which achieves
only a suboptimal first-order convergence rate in the energy norm (i.e., 0(h®®) since DOFs
o« h™2). In contrast, the adaptive method successfully recovers the optimal first-order rate
by concentrating refinements around the singularity.

Table 3. Convergence History for the L-Shaped Domain Problem (P,—P; Elements)

Method DOFs E, Rate E, Rate E 0

UFEM 162 3.87e-1 — 2.15e-1 — 4.43e-1 210
UFEM 642 2.74e-1 050 1.52e-1 0.50 3.14e-1 2.08
UFEM 2562 194e-1 050 1.07e-1 0.50 2.22e-1 2.07
AFEM 162 3.87e-1 — 2.15e-1 — 4.43e-1 2.10
AFEM 550 1.98e-1 1.05 1.10e-1 1.05 2.27e-1 2.02
AFEM 1934 9.82e-2 1.02 5.46e-2 1.02 1.12e-1 201
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AFEM 7202 4.8%-2 1.01 272e-2 1.01 5.60e-2 2.00

The adaptive method’s superiority is quantifiable: at approximately 2,000 DOFs,
AFEM achieves an error of 1.12 X 107!, while UFEM at 2,562 DOFs has an error of
2.22 x 107! —a factor of two improvement in accuracy for a comparable computational
cost. The effectivity index remains stable around 2.0, confirming the estimator’s robustness
even in the presence of a strong singularity (Table 2).
Comparison with Existing Adaptive Methods

To contextualize our results, we compare our AFEM’s performance on the L-shaped
domain with data reported in the literature for other adaptive schemes.

Table 4. Comparative Efficiency at ~2000 DOFs on the L-Shaped Domain

Total Error Convergence

h Ref Key F
Method eference E Rate ey Feature
Uniform
Refinement This work ~ 2.22e-1 0.50 Baseline
(UFEM)
Proposed . Conforming, mesh-
Th k  1.12e-1 1.02
AFEM (P-Py) 15 Wor ¢ 0 adaptive
Adapti
apuve Becker & Nonconforming
Nonconforming Mao [1] ~1.20e-1 ~1.0 lement
FEM ao elements
. Manzini &
Adaptive VEM Mazzia [3] 1.15e-1 1.0 Polygonal meshes
Locally
Adaptive Fang [4] ~1.30e-1* ~1.0 Divergence not zero
Penalty

Note: The error for Fang’s method 4 is estimated from reported L* velocity errors and is not directly
comparable, as it measures a different norm and allows | V - up, |> 0.

This comparison demonstrates that our conforming, mesh-adaptive method is highly
competitive. It achieves accuracy on par with or better than state-of-the-art nonconforming
and VEM approaches, while maintaining the physical fidelity of a strictly divergence-free
velocity field —a key advantage over penalty-based methods like Fang’s, which sacrifice
exact mass conservation for algorithmic simplicity (Table 4).

3. Results and Discussion

Section 5 contains numerical experiments that offer strong empirical confirmation of
the theoretical properties developed for the adaptive finite element algorithm that we
propose. These results not only show that our method achieves the theoretical optimal
convergence rates up to logarithmic factors in the problems dimension, but also highlights
its significant practical benefits in terms of computational efficiency and accuracy,
especially when the solution is supported on localized features like singularities or steep
gradients.
Validation of Theoretical Predictions

The most significant theoretical claim of this work is that the adaptive algorithm
achieves quasi-optimal convergence, meaning that the error decreases at the best possible
algebraic rate with respect to the number of degrees of freedom (DOFs). This prediction is
unequivocally confirmed by the results for the L-shaped domain problem (Table 2). On
this domain, the exact solution possesses a velocity gradient singularity at the re-entrant
corner, which fundamentally limits the convergence rate of any method using quasi-
uniform meshes. As predicted by approximation theory, uniform refinement (UFEM)
achieves only a suboptimal rate of O(N~°2%) in the L*-norm for velocity (or equivalently,
O(N~°%) in the energy norm, since N « h™?). In stark contrast, the adaptive method
(AFEM) successfully recovers the optimal rate of O(N~%%) in the energy norm (i.e., a rate
of 1.0 in Table 2), which is the best possible rate for the P,—P; element pair. This result is
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not merely a numerical observation; it is a direct consequence of the algorithm’s ability to
concentrate mesh refinement around the singularity, thereby equidistributing the error
and mimicking the optimal mesh distribution predicted by nonlinear approximation
theory.

Furthermore, the contraction property (Theorem 2) is implicitly validated by the
monotonic and consistent reduction of the total error E with each adaptive iteration. The
smooth, predictable decay of the error, without any erratic jumps or stagnation, indicates
that the Dorfler marking strategy with 6 = 0.3 effectively controls the error reduction
process, ensuring that each refinement step contributes meaningfully to the overall
accuracy.

Computational Efficiency and Practical Advantage

The primary practical benefit of the adaptive approach is its superior computational
efficiency. As demonstrated in Table 2, to achieve an energy error of approximately
5.6 X 1072, the adaptive method requires only 7,202 DOFs. In contrast, uniform refinement
would require a mesh with roughly four times as many DOFs (extrapolating from the
convergence rate, approximately 28,000-30,000 DOFs) to reach the same level of accuracy.
This factor-of-four reduction in DOFs translates directly into a proportional reduction in
memory usage and, more importantly, a significant reduction in computational time for
solving the linear system, which typically scales superlinearly with the number of
unknowns. For large-scale simulations, this efficiency gain is not merely convenient —it is
essential for feasibility.

The effectivity index ©, which remained stable between 1.8 and 2.0 across all test cases,
confirms that the residual-based error estimator is both reliable and robust. Its consistency,
even in the presence of a strong singularity, means that the estimator can be trusted to
guide the mesh adaptation process without manual tuning or intervention. This reliability
is a critical feature for the method’s practical deployment in complex, real-world
simulations where the location and nature of solution features are not known a priori.
Comparative Analysis and Physical Fidelity

A critical point of discussion is how the proposed method compares to other state-of-
the-art adaptive strategies, particularly the recently proposed locally adaptive penalty
method by Fang. While Fang’s method is innovative and mathematically stable, it
represents a fundamentally different philosophical approach to adaptivity. Instead of
adapting the mesh to resolve the solution, it adapts the penalty parameter € to relax the
incompressibility constraint V - u = 0 in regions where it is difficult to satisfy.

This distinction has profound practical implications. Our method, being a conforming
FEM with mesh adaptation, produces a discrete velocity field u, that satisfies V-u, =0
exactly (up to solver tolerance) at every point in the domain. This strict enforcement of mass
conservation is a non-negotiable requirement in many applications, such as long-term
simulations of fluid flow, microfluidic device design, or problems involving transport
phenomena where even small mass imbalances can lead to significant cumulative errors.
In contrast, Fang’s penalty method produces a velocity field for which || V - u,, > 0. While
the method controls this divergence (as proven in), it is inherently non-zero. This
relaxation of the physical constraint, while algorithmically convenient, can be a critical
drawback. As shown in Table 3, even though Fang’s method achieves a convergence rate
of 1.0, its reported error (in a different norm) is slightly higher than our method’s at a
comparable DOF count. More importantly, the nature of the error is different: ours is a pure
approximation error, while theirs includes a component from the violation of the
continuity equation.

Therefore, the choice between the two methods is not merely one of efficiency or
convergence rate, but of physical fidelity. For applications where exact mass conservation
is paramount, our mesh-adaptive conforming FEM is the superior choice. For problems
where a small, controlled divergence is acceptable and algorithmic simplicity is
prioritized, Fang’s penalty method may be attractive.

Limitations and Robustness

While the results are highly promising, it is important to acknowledge the current

limitations of the study. The algorithm has been tested and proven for steady-state Stokes
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flow in two dimensions. Its extension to three-dimensional problems is non-trivial, as the
complexity of mesh refinement (e.g., maintaining shape-regularity with NVB in 3D) and
the cost of solving the linear system increase dramatically. Similarly, the extension to the
time-dependent Navier-Stokes equations requires the development of error estimators
that account for temporal discretization errors and the handling of the nonlinear
convective term, which can introduce additional stability challenges.

Moreover, while the Taylor-Hood element is robust, it is not the most computationally
efficient for very large problems. Future work could explore the integration of this
adaptive framework with more efficient element pairs or iterative solvers specifically
designed for saddle-point systems.

Despite these limitations, the core algorithmic framework—relying on a proven
residual estimator, Dorfler marking, and NVB refinement—is remarkably robust. Its
performance on the highly singular L-shaped domain problem demonstrates its ability to
handle extreme cases, suggesting it will perform reliably on a wide range of practical
geometries. the proposed adaptive algorithm successfully bridges the gap between
rigorous mathematical theory and practical computational performance. It delivers on the
promise of AFEM: optimal accuracy with minimal computational cost, while preserving
the fundamental physical constraints of the problem.

4. Conclusion

We have proposed, analyzed and numerically validated a new adaptive finite element
algorithm to efficiently solve the Stokes equations. The key innovation is that we integrate
a residual-based a posteriori error estimator with formal degrees of freedom using a
known optimal a posteriori based adaptive mesh refinement strategy so that our method
is simultaneously a practical computational algorithm and a theoretical optimal algorithm.
The aforementioned numerical experiments act as a compelling body of evidence,
supporting these theoretical assertions. This corresponds to a strong reduction in
computational effort as the required accuracy level is reached with approximately a
quarter of as many degrees of freedom as with uniform refinement. The error estimator
based on the residuals was found to be very reliable and robust — consistently giving an
effectivity index of approximately 2.0 on all the test cases — and is thus a great practical
guide for mesh adaptation in an automatic mode without user involvement.

It lays the foundation for stable, fast and theoretically-correct numeric simulation of
incompressible viscous flows. This algorithm is promising and opens multiple ways for
future work:

1. Three-Dimensional Generalization: The most straightforward and significant
generalization is to extend the algorithm to three dimensions. This will impose a need
to more delicately manage tetrahedral mesh refinement (namely, via 3D newest vertex
bisection or red-green refinement), and design of fast solvers for the much higher
dimensional systems that result.

2. Time-Dependent Problems: One obvious extension is to develop this adaptive
framework for the time-dependent, or unsteady, Navier-Stokes equations. It will
require to extend the space-time error estimators to account for the temporal
discretization errors as well as the nonlinear convective term, possibly through semi-
implicit time-stepping or nonlinear residual estimators.

3. Complex Discretizations: The adaptive loop can be combined with more complex finite
element pairs (e.g. pressure-robust elements) or discretization methods (e.g.
discontinuous Galerkin or hybridized methods) to improve the accuracy and efficiency,
in particular for high-Reynolds-number flows.

4. The scalability of this algorithm for large-scale problems needs to be leveraged and
combined with multilevel preconditioners, such as algebraic multigrid, and also
parallel computing paradigms to efficiently solve the linear systems on adaptively
refined meshes.
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