

CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES

https://cajmtcs.casjournal.org/index.php/cajmtcs

Volume: 06 Issue: 04 | October 2025 ISSN: 2660-5309

Article

Integration of Health and Position Tracking System for Extreme Environments in Mining and Mountain Climbing

P. Velavan*1, I. Syed Hakkim2, A. Prasanth3, A. Ranjith Kumar4, M. Mohamed Thariq5

- 1,5. Department of Computer Science and Engineering, Dhaanish Ahmed College of Engineering, Padappai, Chennai, Tamil Nadu, India
- 2,3,4. Department of Artificial Intelligence and Data Science, Dhaanish Ahmed College of Engineering, Padappai, Chennai, Tamil Nadu, India
- * Correspondence: velavan@dhaanishcollege.in

Abstract: These days, it's more necessary than ever to check on the health and safety of coal miners and mountain climbers. There are numerous steps that need to be taken to ensure the safety of miners and climbers. They need pulse rate monitors and the necessary communication gear to communicate with the control centres, allowing them to monitor the health of the climbers and miners. It turns out that mountain climbers and coal miners can't use it when the weather is particularly poor, and at some heights, it's even less helpful because of communication problems. The work suggests a health and position tracking system that utilises GPS to determine the individual's current location and also monitors their heartbeat and temperature. This technology addresses the challenges faced by mountain climbers and coal miners, enabling them to receive immediate support. People who engage in mountaineering and mining activities often participate in various pursuits, including hiking, climbing hills, and mining, among others. But it can be dangerous. People often become ill at high altitudes, go missing, or fall by accident. There are many reports of deaths and serious injuries caused by climbing mountains and mining. We need to monitor accidents that occur while climbing mountains and engaging in mining activities, and develop a strategy to rescue people. People have explored this topic and believe that Wireless Sensor Networks and Telehealth are effective approaches to address it. To deliver data over very long distances where there is no network coverage, low-power devices were needed. Because of this, wireless technologies like Long Range (LoRa), which is a network that can carry data over long distances without requiring a significant amount of power, can be utilised. A safety device that utilises LoRa technology to monitor a person's location is installed. The Internet of Things (IoT) and LoRa gateway work together to make a cloud server. This method gives you a way to keep an eye on things, track them, and obtain help promptly.

Keywords: Global Positioning System (GPS), Climbers and Miners, Sensor Networks, Altitude Sickness, Hill Climbing, Long Range (LoRa)

Citation: Velavan, P., Hakkim, I. S., Prasanth, A., Kumar, A. R., & Thariq, M. M. Integration of Health and Position Tracking System for Extreme Environments in Mining and Mountain Climbing. Central Asian Journal of Mathematical Theory and Computer Sciences 2025, 6(4), 1007-1022.

Received: 31th Aug 2025 Revised: 10th Sep 2025 Accepted: 26th Sep 2025 Published: 09th Oct 2025

Copyright: © 2025 by the authors. Submitted for open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/)

1. Introduction

These days, people are climbing mountains or engaging in more physical activities to achieve better health and balance their mental, physical, and emotional wellness [26]. It also discussed how exercise can improve blood flow, body weight, and flexibility. Both coal mining and mountain climbing are full-time jobs. This sport of climbing is growing swiftly [38]. Different groups are encouraging more people to try climbing, and as a sport, individuals are striving to break past existing records. Be mindful of the risks of accidents

as you climb [34]. People who climb mountains at high altitudes or mine coal are at risk of experiencing low oxygen levels, cold temperatures, wind, physical and emotional stress, and inadequate nutrition [47]. This sudden change causes blood pressure and heart rate to fluctuate unusually. The biggest risk is not getting enough oxygen when you ascend to high elevations, which can make it difficult to breathe [29]. Climbing in very hot or very cold conditions might potentially hurt you, give you hypothermia, or cause heat stroke. In addition to the weather, exposure to bugs and poisonous plants can trigger allergies and changes in blood pressure that require medical attention [45].

When someone falls ill, leaders who don't know how to treat people in the mountains are unable to help. Many miners and hikers are unaware of how to access the medical equipment, which makes things very difficult [33]. In this instance, it may be challenging for the affected person to contact the rescue crew, and locating the injured climbers or miners may take a considerable amount of time, potentially putting them at risk of severe illness. The team needs to be able to figure out where the miner or mountain climber is using the correct tools [40]. LoRa (Long Range) is a wireless radio frequency technology that is gaining popularity for connecting to Internet of Things (IoT) networks worldwide.

LoRa and IoT have helped us address some of our biggest challenges, including reducing natural resource consumption, improving infrastructure efficiency, regulating pollution, and managing energy more effectively. LoRa can be used in smart homes and buildings, smart farming, smart diagnosis and logistics, and even to monitor the health of a sick person. LoRa's long range is one of its best qualities. With the correct directional antennas, it can go as far as 10 km in rural regions [37]. It also works better within buildings in cities than other wireless technologies [25]. LoRa is a cost-effective and lowpower option, as it significantly reduces infrastructure costs and has minimal operational expenses. You won't have to replace it for a long time because the battery lasts a long time [44]. LoRa is a combination of Wi-Fi and cellular networks, making it a cost-effective, flexible, and effective alternative to conventional wireless technologies [51]. Telehealth is a means of transferring medical information and data over vast distances using telecommunications systems, providing you with the correct medical care or diagnosis. When medical services are not readily available, it is crucial to overcome the distance barrier [30]. Mountaineers and miners can utilise telehealth to monitor individuals remotely, identify potential issues, and provide assistance.

The real-time emergency rescue system utilises a heartbeat monitor and an inertia sensor to alert the user to altitude sickness and to detect if they are falling. A smartphone with Bluetooth is used to keep an eye on things, and an app on the phone sends the data to rescuers via cellular networks to facilitate the transfer. The software lets the person wearing it broadcast their location and call for aid in an emergency [41]. The WE-Safe is a tool that helps you monitor situations that are potentially harmful or unsafe. A LoRa gateway receives signals from a number of environmental sensor nodes that consume minimal power. People were cautioned about hazardous work settings by monitoring levels of carbon dioxide, ultraviolet light, and other environmental factors [32]. You can connect to the internet through a cloud server with the LoRa Gateway [50]. When the environment becomes harmful, a mobile app will send you alerts. A LoRa-based tracking system was implemented. This reduced the number of repeaters needed by 75% or more compared to the Wi-SUN-based systems used previously. This resulted in a significantly lower installation cost [46]. The tracking was sent to a bus stop with an information terminal that people could access. After considering the above innovation, I examined the routes of mountain climbers and miners, such as their speed, distance, and health while climbing or mining. This information helps them reach their goal as soon as possible and also enables them to contact the rescue team for assistance. GPS gives the base station the location of a miner or climber. The climber or miner can see the message from the control room on the monitor, like "Aler...!" Heartbeat: (heart rate value)/M GPS Location: (temperature value) °C Temperature [27].

Problem Statement

Reliable and effective communication and monitoring systems are essential in various situations, including emergency rescue operations, monitoring hazardous areas, precision agriculture, and tracking public transportation [36]. These systems are designed to address specific issues, such as ensuring people's safety and health in hazardous regions, enhancing farming productivity, and improving public transportation reliability. However, the solutions that are already available often have drawbacks [49]. For example, they are too expensive to deploy, rely on timing systems that aren't always accurate, and lack sufficient monitoring capabilities [42]. For example, traditional bus tracking systems often require multiple repeaters, which can increase installation costs and reduce reliability.

Additionally, irrigation systems with fixed timers may not be able to adjust their water usage according to soil moisture levels, potentially wasting water. Additionally, when people are climbing mountains, their vital signs, location, and safety status must be continuously monitored in real-time so that aid can be provided promptly in the event of an emergency [31]. Current systems may not provide climbers and rescue personnel with all the necessary monitoring and communication tools, which could put individuals in high-risk or isolated regions at risk [48].

Therefore, we need new ways to communicate and monitor things that can quickly resolve these issues [35]. These kinds of systems should be inexpensive, reliable, and capable of sending, receiving, and monitoring data in real-time. This way, they can ensure that various operations, such as emergency rescue operations, environmental monitoring, agricultural practices, and public transportation tracking, are safe and efficient [43]. These requirements encompass a wide range of areas, including hardware, software, data, and infrastructure [28]. To ensure that the system meets the area's needs and adheres to environmental norms and standards, it's vital to collaborate with domain experts and stakeholders [39].

Literature Survey

People have been drawn to mountains for a long time because they desire to climb them or harvest their resources [18]. A group of climbers and miners carries the tools they need to ascend steep slopes, traverse rough terrain, and dig tunnels deep underground [4]. The main control centre watches the movements. The team members are entering an area where avalanches could develop, and if something goes wrong, the people who are hurt could be buried in the snow [12]. In these kinds of events, 65% of deaths are caused by suffocation, 29% by trauma, and the rest by hypothermia, drowning, or primary cardiac arrest. People can purchase electronic equipment and gadgets designed for everyday use in households. They use Wi-Fi to deliver health information to IoT systems. The present study aims to address the healthcare challenges encountered by mountaineers on treks under both normal conditions and extreme situations, including entrapment, without reliance on Wi-Fi connectivity [21]. The proposed electronic system features chips that require minimal power and can operate in temperatures as low as -40 °C. Using emerging technologies such as Wireless Sensor Networks, LoRa, and satellite modems, the system transmits data on parameters like heart rate, oxygen level, and body temperature to a central control station [55]. If victims are accidentally buried, the electrical system includes a special mechanism that instantly delivers data to the primary node at the optimal power level and activates Op-Mode-5. The device helps monitor the health of miners and mountaineers regularly, enabling search and rescue operations to be conducted promptly and saving lives [3].

The GPS we have now is extremely easy to use and works immediately. One of the most typical ways to get where you want to go and find your way around. Most navigation systems use GPS receivers to collect mapping data from satellites. GPS-based navigation systems still need cell phone signals to work. So, the telecommunications

technology in the navigation system still has certain issues [8]. One of the drawbacks is that you can't utilise GPS-connected cell phone signals to keep an eye on people on the mountain or at a mining site. Due to these restrictions, the best approach to utilising GPS navigation is to connect sensors to other sensors across a wireless network, which is often referred to as a wireless sensor network [17]. People routinely utilise wireless sensor networks to send and retrieve data from sensors that are being monitored.

Many apps, such as games and robots, as well as real-life problems, require the ability to find the shortest path between two points [54]. Because it needs to deal with a lot of diverse choices. In mountain climbing and mining, finding the quickest way from the start node to the end node is a simple task. There are also some interesting topics to look into in each of these areas that you can't find in a normal two-dimensional space search [7]. We present a concurrent Ant Colony Optimisation (ACO) approach to ascertain the shortest path in the mountain climbing issue using Apache Spark. A dataset of varying sizes is used to test the proposed method in terms of runtime, speedup, efficiency, and cost. The experimental findings show that the parallel ACO algorithm performed significantly better than the best sequential ACO (p < 0.05). The parallel ACO approach is contrasted to a new research effort that employs Apache Spark and the parallel A* algorithm to find the best way to climb mountains and mine [13]. The parallel ACO approach using Spark worked considerably better than the parallel A* algorithm.

Many more hospitals and other healthcare facilities are utilising healthcare monitoring systems [11]. Countries worldwide are becoming increasingly concerned about healthcare monitoring systems that utilise new technologies. IoT, or the Internet of Things, is a new technology that is becoming more and more popular. IoT is comprised of various sensors and communication tools that health monitoring systems utilising IoT require [2]. The Internet of Things (IoT) has enabled numerous possibilities, but healthcare and health monitoring apps are among the most significant. The remote health monitoring system utilises digital technology to track specific aspects of a patient's health. This way, patients may get a correct picture of their health from the comfort of their own homes [20]. The IoT establishes a strategic connection between the patient and the doctor [9]. The goal is to monitor important health markers, such as blood pressure, heart rate, and blood glucose levels, and then review the data to identify any potential medical emergencies [24].

Different medical sensors and web apps send health data to the site. From there, professionals who want to can aid with medical issues. Using a smartphone as a central hub for gathering, delivering, and displaying data improves the process, allowing it to operate more smoothly and providing you with more options [5]. Wearable health tracking devices that work in real-time are beneficial for older people because they continuously monitor their health and ensure that emergency measures are taken promptly [14].

Problem Statement and Proposed Solution

Mining and climbing mountains are both enjoyable and challenging activities that require careful attention to stay safe. As more people climb and mine, it becomes more necessary to keep climbers and miners safe and healthy. However, climbers and miners face numerous issues, particularly when it comes to maintaining their health and communicating effectively with rescue workers [10]. One of the biggest concerns is that miners and climbers lack real-time health monitoring. It's crucial to monitor vital signs, such as heart rate, temperature, and pulse rate, as people ascend or descend in altitude, as their bodies undergo significant changes [52]. Most of the time, current methods fail to work effectively because they cannot provide immediate feedback or promptly communicate critical information to rescue teams. Also, it's considerably harder to communicate at higher and lower altitudes, which makes rescue efforts much less successful. In the event of an emergency, climbers and miners are at risk when their regular communication tools fail to function [15]. This lack of clear communication can

slow down response times, making it more likely that someone will be severely hurt or die. There are always risks, like getting sick from the altitude or falling by accident [6]. Unfortunately, many instances result in severe injuries and occasionally fatalities, underscoring the necessity for a robust monitoring and rescue system.

Proposed Solution

A full health and position tracking system is recommended for both miners and mountain climbers to help with these issues. This system utilises the latest technology to monitor events in real-time and dispatch aid promptly if an issue arises. The most important feature of this system is the wearable pulse rate monitors that miners or climbers take with them [19]. These sensors continually monitor vital health indicators, including heart rate, temperature, and pulse rate. After that, the correct communication tools send this information to control centres. This ensures that rescue teams are swiftly alerted to any concerning changes in the climber's or miner's health. The solution overcomes the challenges of talking at high altitudes by utilising Global Positioning System (GPS) technology [22]. This helps rescue workers track the user's location in real-time, even in rough and remote areas, so they can locate them exactly where they are.

The GPS-based system ensures that both climbers and miners can still be reached swiftly, even when other communication methods are unavailable. Telehealth services and Wireless Sensor Networks (WSNs) are also employed to improve the monitoring system [23]. With WSNs, you can transport data over long distances without using a lot of power or having to deal with intricate wiring. Large Range (LoRa) technology is utilised, known for its ability to transport data over long distances with minimal power consumption [1]. This means that even in regions where the network isn't particularly strong, essential health data can still be transferred to a cloud server. The cloud server is the primary location where climbers and miners send and receive data via LoRa gateways and Internet of Things (IoT) devices [53]. With this design, you can have a complete system for monitoring, tracking, and early rescue [16]. Rescue teams can get real-time information about a climber's or miner's health and location, which helps them respond swiftly and effectively to emergencies.

2. Materials and Methods

When individuals climb mountains, they are putting their strength and expertise to the test against the forces of nature. However, its attractiveness comes with significant risks, especially in regions that are difficult to access and are often deadly. A detailed plan is needed to address the urgent need for a reliable monitoring and rescue system [60]. The purpose of this methodical approach is to develop and implement a comprehensive solution that utilises the latest technologies to keep miners and mountain climbers safe and healthy [79].

Requirement Analysis

The first step is to assess all the requirements necessary for effective surveillance and rescue operations in mountainous and underground areas. You need to learn about the key components that the system requires in this step. These items include GPS modules, communication devices, and pulse rate sensors [65]. The team examines the issues with current approaches, particularly those that arise when people communicate at high and low altitudes.

Research and Technology Selection

The research team examines available technologies to address identified issues, informed by the requirements analysis [80]. Pulse rate sensors are used to monitor the health of miners and climbers, as they can provide real-time information on their well-being. It's crucial for rescue efforts that GPS modules can precisely determine a person's location and their exact position. There are also temperature sensors installed to monitor the weather, which could be detrimental to the health of climbers and miners [70]. Long

Range (LoRa) technology and Wireless Sensor Networks (WSNs) are the most effective approaches to addressing communication problems in remote regions. WSNs can transport data wirelessly over long distances, and LoRa technology is ideal for long-range communication that consumes minimal power [86]. The reason these technologies were chosen is to assist climbers in communicating more effectively with one another in rugged and remote regions, where they often struggle to do so.

System Design and Development

After the technologies have been chosen, the next step is to design and build the health and position tracking system. There are plans for a monitoring device that will have pulse rate sensors, GPS modules, and temperature sensors all in one. LoRa gateways and Internet of Things (IoT) technology are used to create and design a cloud server architecture simultaneously. The data from climbers' and miners' monitoring equipment is mostly saved and processed in this cloud-based system [56]. It ensures that rescue teams can access critical health information in real-time, which helps them make quick and informed decisions in certain circumstances.

Testing and Validation

A lot of testing and validation is done on the system to ensure it functions well in real-life scenarios, such as when people go mountain climbing or mining. Climbers and miners can conduct field tests in various locations [64]. We carefully examine how well the monitoring device functions, how effectively the LoRa data transmission works, and how efficiently the cloud server can deliver and process information [85]. The study team aims to ensure the system's functionality by testing it to verify its ability to track health and location in real-time.

Implementation and Deployment

The final step is to put the system into use and deploy it after testing and validating the technique [78]. LoRa technology enables climbers and miners to submit their essential health information to the cloud server easily. Rescue teams learn how to utilise the system, become familiar with the interface, and understand how to respond to emergency alarms [66]. Then, the system is put to the test in mountainous and underground places that climbers and miners commonly visit. It must demonstrate the ability to monitor, track, and facilitate early rescue operations.

Monitoring and Maintenance

Setting up the system in the mountains and getting climbers to use the monitoring devices is a crucial element in maintaining and troubleshooting the system. The study team establishes standards for verifying the data that miners' and climbers' gadgets provide to the cloud server. This means keeping a watch on: Checks to ensure the data is correct. We frequently verify the data supplied to ensure its accuracy [71]. If any difficulties or contradictions arise, they are noted for further study.

System Health Checks: We regularly verify the system's health, which includes evaluating the battery levels of monitoring devices and the quality of connections [57]. We gather input from climbers, miners, and rescue teams, and look for any issues with the user experience or ideas on how to improve it. There are maintenance procedures in place to address any issues that arise promptly [81]. This includes how to Take Care of Your Device: People who climb and mine are taught how to use and charge their monitoring equipment properly. System upgrades: If any known faults are identified, system upgrades and software updates are implemented to correct them and improve the system's performance.

Training and Education

Teaching climbers, miners, and rescue teams how to use the new monitoring system is a big part of the plan [74]. People who create and administer training programs teach climbers and miners how to utilise the monitoring equipment and how to send out alerts

or distress signals in case of an emergency. Some of the things that rescue teams learn throughout training are: How the System Works: Rescue teams learn how to use the cloud-based interface to obtain data from climbers' and miners' equipment in real time [63]. Emergency Response Protocols: Rescue teams have standard operating procedures (SOPs) that outline how to respond to various types of emergencies, such as sudden health deterioration or distress signals. Using GPS and Navigation: Rescue teams learn how to read GPS data so they can locate climbers and miners precisely where they are in challenging terrain.

Additionally, educational materials are available to help climbers and miners understand the importance of safety standards and monitoring systems. These safety rules: Miners and climbers acquire a lot of information on how to stay safe while climbing mountains and mining [72]. The strategy aims to help climbers and miners utilise the monitoring system effectively by providing them with extensive training and education. This will also make mountain climbers and miners safer and healthier in general.

Heart Beat Sensor

The heartbeat sensor is based on photoplethysmography [82]. It monitors how much blood volume changes in any organ of the body, which affects how much light can travel through that organ (in an avascular region). The timing of the pulses is especially crucial in apps that track heart rate. The speed at which the heart beats affects the amount of blood that flows. The signal pulses are the same as the heartbeat pulses because blood absorbs light [67]. There are two types of photoplethysmography: Sending: The lightemitting gadget sends light through any region of the body that has blood arteries, like the earlobe. The detector picks it up. The areas reflect light that emanates from the lightemitting equipment, see Figure 1.

Figure 1. Reflection Region.

Working of a Heartbeat Sensor

A simple heart rate sensor typically consists of a light-emitting diode and a detector, which can be either a photodiode or a light-detecting resistor. The heartbeats modify how blood flows to different sections of the body. When light hits tissue, like an LED, it either bounces off (like a finger) or lets the light through (like an earlobe). The light detector detects the light that is transmitted or reflected, and the blood absorbs some of this light [75]. The amount of light absorbed depends on the amount of blood in the tissue. The detector emits an electrical signal that is directly proportional to the heart rate. This signal is a direct current (DC) signal related to blood volume and tissue. The alternating current (AC) element, which is in sync with the heartbeat and is generated by variations in blood volume in the arteries, is added to the DC signal. The most crucial thing is to separate that AC section because it is so important. The output from the detector is first filtered using a 2-stage HP-LP circuit to retrieve the AC signal [58]. After that, a comparator circuit or a simple ADC changes it into digital pulses. A microcontroller receives the digital pulses and calculates the heartbeat rate using the calculation BPM (beats per minute) = 60*f. The pulse's frequency is f.

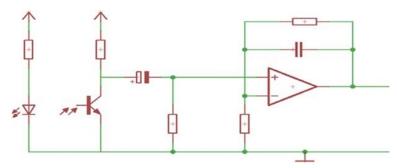
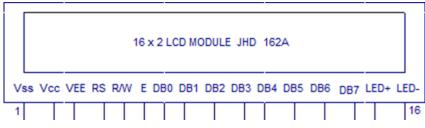



Figure 2. Working of a Heartbeat Sensor.

Liquid-Crystal Display

A liquid-crystal display (LCD) is a flat-panel display or another electronically modulated optical device that uses polarisers and the light-modulating properties of liquid crystals. Liquid crystals don't produce light directly; instead, they utilise a backlight or reflector to create colour or black-and-white images. LCDs can display any image, similar to a general-purpose computer display, or they can show fixed graphics with limited information that can be displayed or hidden. For example, digital clocks and other gadgets with predefined words, numbers, and seven-segment displays are all good examples of this type of display [76]. The core principle remains the same, but arbitrary images are generated from a grid of small pixels, whereas other displays have larger components. Depending on how the polariser is set up, LCDs can be either normally on (positive) or off (negative). For instance, a character positive LCD with a backlight will have black letters on a background that is the same colour as the backlight [62]. A character negative LCD will have black letters on a background that is the same colour as the backlight. To make white on blue LCDs seem the way they do, optical filters are added [69]. A typical LCD pixel has a layer of molecules lined up between two clear electrodes, which are usually made of Indium-Tin oxide (ITO). It also has two polarising filters (one parallel and one perpendicular), with the axes of transmission of the filters being perpendicular to each other in most cases. If there were no liquid crystals between the polarising filters, the second (crossed) polariser would block the light that went through the first one. Before an electric field is introduced, the way the liquid-crystal molecules are arranged is governed by how the electrodes are aligned at their surfaces [83]. When you have a twisted nematic (TN) device, the surface alignment orientations at the two electrodes are at right angles to one another. This makes the molecules twist into a helical form. This causes the polarisation of the incoming light to change, making the gadget look grey, see Figure 2.

Figure 3. LCD Module JHD 162A.

The Blynk app displays the temperature in real-time, providing climbers and miners with information on the current temperature. Temperature changes are very important, as they enable officials to determine the likelihood of someone experiencing hypothermia or overheating and take appropriate action[77]. To comprehend the difficulties that climbers and miners face, we need to understand atmospheric pressure. The Blynk app displays this data in a way that helps officials determine how it can impact the health of climbers

and miners, especially in high-altitude areas where pressure changes are significant, see Figure 3. The altitude of climbers and miners is a crucial factor that affects how their bodies respond to lower oxygen levels [84]. Blynk displays altitude data clearly, making it easy to quickly determine how climbers and miners are affected by high and low altitudes, as well as any potential issues that may arise from them. The Blynk app utilises GPS data to display real-time longitude and latitude coordinates [59]. This level of tracking ensures that everyone knows exactly where they are, which helps rescue crews navigate the challenging terrain of mountains and deep underground. The Blynk app smoothly integrates the climber's and miner's pulse rates, which are important health parameters checked in Procedure 1.

This provides a comprehensive view of the climbers' and miners' heart health, enabling authorities to identify any potential health issues. The Blynk app features a simple and easy-to-use UI designed for higher-ups and rescue teams. The app's dashboard displays a combined view of all climbers and miners linked to the Summit Guard system [68]. The data for each climber and miner is displayed in real-time in a clear and easy-tosee format. Charts, graphs, and numbers are all effective ways to gain a rapid understanding of the most important factors. You can change the interface to display the most important information upfront, which helps decision-makers prioritise and adapt quickly to new situations. Blynk allows you to set up alerts and notifications that can be customised to make the SummitGuard system even more responsive [61]. You can establish thresholds for each parameter, and when values go outside of those thresholds, you will get an instant alert. This function is particularly useful in emergencies, as it enables people to take quick and targeted actions when they receive timely alerts [73]. For instance, if a climber's heart rate exceeds a safe level or the temperature drops suddenly, the Blynk app may transmit urgent signals to higher authorities so they can initiate emergency procedures and organise rescue efforts immediately.

3. Results and Discussion

It's incredibly crucial to be able to make decisions quickly when time is of the utmost importance, such as in an emergency. The Blynk app serves as a central hub, enabling higher-ups and rescue teams to make informed decisions based on up-to-date information [88]. For instance, if a miner or climber requests aid or their health indicators indicate they are in critical distress, decision-makers may use the Blynk app to verify the climbers' and miners' locations, the weather conditions, and their overall health. This ability changes the game when it comes to addressing potential threats promptly and in a coordinated manner. The Blynk app can log data over time in addition to real-time monitoring [94]. This feature helps review what transpired after an emergency, as it shows officials the chain of events that led up to it [91]. Historical data can help inform the development of more effective safety measures and risk reduction plans by revealing patterns, trends, and potential causes. The historical analysis can also be useful for reviews and debriefing sessions after a trip. It helps build a circle of constant improvement, where what was learnt on each trip is used to make Summit Guard better for future missions.

To add the Blynk app to the Summit Guard system, ensure that security and privacy are robust. The Blynk app encrypts data exchanged between the miner's and climber's gear to ensure it is safe and private. To keep private information safe, security access controls are implemented to prevent unauthorised users from accessing the Blynk app [89]. When planning and building the SummitGuard system, one of the most important considerations is how to comply with the regulations governing data privacy. Adding secure ways to communicate and protect privacy is in keeping with ethical standards, as it prioritises the safety of climbers' and miners' personal information. Procedure 5 is the concluding piece of the intricate puzzle that is the Summit Guard project. The Blynk app integrates seamlessly with the rest of the Summit Guard ecosystem and serves as the

primary platform for decision-making [93]. The health monitoring system and the app's real-time data function nicely together [95].

Safety is the most crucial factor when it comes to mountain climbing and coal mining, where the exhilaration of going up high and delving underground meets the risks of harsh terrain. This strategy provides a careful approach to addressing the urgent need for a robust rescue and monitoring system. The goal of this plan is to keep mountain climbers and miners safe in high-risk areas by utilising the latest technology, including pulse rate monitors, GPS modules, LoRa communication, and cloud-based infrastructure [87]. By carefully examining the criteria, the method identified the most significant aspects required for effective monitoring. Some of these parts were GPS modules, communication devices, and sensors that measure pulse rate. The incorporation of cutting-edge technologies, such as Wireless Sensor Networks (WSNs) and Long Range (LoRa) communication technology, was intentional, with the goal of assisting climbers in addressing the challenges they face in rugged and remote areas [96]. With the design and development of the monitoring system and the creation of a cloud server architecture, climbers and miners will be able to track their health and locate themselves at all times [90]. The system underwent numerous tests, ranging from the performance of the monitoring devices to the transmission of data over LoRa, until a solution was ready for use [92].

4. Conclusion

As long as the system is monitored and maintained, it will continue to function, and climbers, miners, and rescue teams will have the necessary skills and information. Regularly evaluating the health of devices, the integrity of data, and user feedback keeps the system reliable. With better monitoring, this system protects adventure in a way that looks at the full individual. The system serves as a secure haven in the risky world of mining and climbing, as it incorporates new technology, implements powerful monitoring systems, and provides climbers, miners, and rescue teams with increased control. This strategy is a comprehensive approach to addressing the urgent need for a robust rescue and monitoring system. This plan utilises cutting-edge technology, including pulse rate monitors, GPS modules, LoRa connections, and cloud-based infrastructure, to keep miners and mountain climbers safe in high-risk areas.

By carefully examining the requirements, the process identified the essential components required for effective monitoring, including pulse rate sensors, communication devices, and GPS modules. By examining the drawbacks of existing systems, including their limitations in communication and performance at higher altitudes, it was possible to develop a comprehensive solution. The decision to utilise cutting-edge technology, such as Wireless Sensor Networks (WSNs) and Long Range (LoRa) communication, was intentional, as it aimed to help climbers address the issues they face in remote and rugged environments. Climbers, miners, and rescue workers require training and education on how to utilise the system effectively for it to function properly. By regularly evaluating the health of the devices, the integrity of the data, and user feedback, the system remains reliable. Through training programs and instructional materials, climbers, miners, and rescue teams learn how to utilise the system correctly and respond promptly to crises.

Future Scope

The creation and use of the mountain climbers and miners monitoring system is a big step forward in making mountain and deep underground trips safer. However, ensuring that climbers and miners are as safe and healthy as possible is an ongoing process. There are many ways to explore and improve things in the future, which will lead to even safer and better technologies for mountain climbing and mining. By combining Artificial Intelligence (AI) with AI algorithms, it becomes possible to forecast the health of climbers

and miners based on their data. AI can utilise previous data and patterns to predict potential health issues and warn climbers, miners, and rescue crews. AI can also help people make better decisions in certain situations by providing them with real-time information about the best course of action. Further improvements in sensor capabilities can be achieved through additional research and development in sensor technology. Sensors that can detect a wider range of vital signs, such as oxygen levels and hydration status, can provide a more comprehensive picture of a climber's health.

Better ways to communicate with each other. Improvements in communication technologies can make communication in mountainous areas even more reliable and efficient. Researching satellite communication technology ensures that people can stay connected even in the most remote places. Rescue operations can be made easier and faster by integrating with existing emergency response systems. Expanding the Internet of Things (IoT) ecosystem can create new ways to monitor and stay secure. Wearable technology, such as smartwatches or augmented reality glasses, can provide climbers with real-time information about their health and the world around them. Drones that integrate with the Internet of Things (IoT) can aid in search and rescue operations by providing airborne reconnaissance in challenging terrain. Environmental Monitoring: Adding environmental sensors to the monitoring system can provide valuable information about the weather and environmental hazards. Real-time alerts on shifting weather patterns, avalanche threats, or seismic activity can help climbers stay safe and make smart decisions about their routes.

Education and Training Initiatives: Ongoing education and training initiatives are crucial to ensure that climbers, miners, and rescue crews are equipped to utilise advanced monitoring systems. Teaching climbers and miners advanced first aid, wilderness survival skills, and how to use the system can help them take more responsibility for their own safety. In conclusion, the future holds a lot of promise for improving safety and technology in mining and mountain climbing. This mountain climber and miner monitoring system is a step toward a future where climbers and miners can embark on their adventures with confidence, knowing they have the most up-to-date safety gear.

REFERENCES

- [1] S. A. Korkmaz and M. Poyraz, "Path planning for rescue vehicles via segmented satellite disaster images and GPS road map," in Proc. 9th Int'l. Congress Image and Signal Processing, Bio Medical Engineering and Informatics (CISP-BMEI), Datong, China, pp. 145–150, 2016.
- [2] M. Poulton and G. Roussos, "Towards smarter metropolitan emergency response," in Proc. 24th Annu. Int'l. Symp. Personal, Indoor, and Mobile Radio Communications (PIMRC), London, United Kingdom, pp. 2576–2580, 2013.
- [3] D. Sumathi and P. Poongodi, "Scheduling Based on Hybrid Particle Swarm Optimization with Cuckoo Search Algorithm in Cloud Environment," IIOAB Journal, vol. 7, no. 9, pp. 358-366, 2016.
- [4] D. Sumathi and P. Poongodi, "Secure medical information processing in cloud: Trust with swarm based scheduling," Journal of Medical Imaging and Health Informatics, vol. 6, no. 7, pp. 1636-1640, 2016.
- [5] D. Sumathi and P. Poongodi, "An improved scheduling strategy in cloud using trust based mechanism," Int. J. Comput. Electr. Autom. Control Inf. Eng, vol. 9, no. 2, pp. 637-641, 2015.
- [6] D. Sumathi, B. Melinamath, and R. Goyal, "Iov Traffic Prediction Utilizing Bidirectional Memory and Spatiotemporal Constraints with Local Search and NonLinear Analysis," Journal of Computational Analysis & Applications, vol. 33, no. 2, 2024.
- [7] D. Sumathi, A. Singh, A. Sinha, D. Aditya, and M. R. KF, "The Deepfake Dilemma: Enhancing Deepfake Detection with Vision Transformers," in 2025 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics, Jan. 2025, pp. 1-7.

- [8] V. B. Gowda, M. T. Gopalakrishna, J. Megha, and S. Mohankumar, "Foreground segmentation network using transposed convolutional neural networks and up sampling for multiscale feature encoding," Neural Netw., vol. 170, pp. 167–175, 2024.
- [9] V. B. Gowda, G. M. Thimmaiah, M. Jaishankar, and C. Y. Lokkondra, "Background-foreground segmentation using Multi-scale Attention Net (MA-Net): A deep learning approach," Rev. Intell. Artif., vol. 37, no. 3, pp. 557–565, 2023.
- [10] V. B. Gowda, M. G. Krishna, and J. Megha, "Dynamic Background Modeling and Foreground Detection using Orthogonal Projection onto the Subspace of Moving Objects," in Proc. IC3, 2023, pp. 171–176.
- [11] V. B. Gowda, M. T. Gopalakrishna, J. Megha, and S. Mohankumar, "Background initialization in video data using singular value decomposition and robust principal component analysis," Int. J. Comput. Appl., vol. 45, no. 9, pp. 600–609, 2023.
- [12] A. K. Joshi and S. B. Kulkarni, "Flow analysis of vehicles on a lane using deep learning techniques," J. Adv. Inf. Technol., vol. 14, no. 6, pp. 1354–1364, 2023.
- [13] A. K. Joshi, V. Shirol, S. Jogar, P. Naik, and A. Yaligar, "Credit card fraud detection using machine learning techniques," Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 6, no. 3, pp. 436–442, 2020.
- [14] A. K. Joshi and S. B. Kulkarni, "Multi-modal information fusion for localization of emergency vehicles," Int. J. Image Graph., vol. 24, no. 1, Art. no. 2550050, 2024.
- [15] A. K. Joshi and S. B. Kulkarni, "Multimodal deep learning information fusion for fine-grained traffic state estimation and intelligent traffic control," Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 3, pp. 1020–1029, 2023.
- [16] V. S. A. Anala, A. R. Pothu, and S. Chintapalli, "Enhancing Preventive Healthcare with Wearable Health Technology for Early Intervention," FMDB Transactions on Sustainable Health Science Letters., vol.2, no.4, pp. 211–220, 2024.
- [17] V. S. A. Anala and S. Chintapalli, "Scalable Data Partitioning Strategies for Efficient Query Optimization in Cloud Data Warehouses," FMDB Transactions on Sustainable Computer Letters., vol. 2, no. 4, pp. 195–206, 2024.
- [18] Md H. Rahman, T. Islam, Md E. Hossen, Md E. Chowdhury, R. Hayat, Md S. S. Shovon, M. Alamgir, S. Akter, R. Chowdhury, and A. R. Sunny, "Machine Learning in Healthcare: From Diagnostics to Personalized Medicine and Predictive Analytics," J. Angiother., vol. 8, no. 12, pp. 1–8, 2024.
- [19] R. Chowdhury, Md A. H. Fahad, S. M. S. Alam, M. I. Tusher, Md N. U. Rana, E. Ahmed, S. S. Akhi, and Md R. H. Mahin, "Database Management in the Era of Big Data: Trends, Challenges, and Breakthroughs," Pathfinder Res., vol. 1, no. 1, p. 15, 2020.
- [20] Md R. H. Mahin, E. Ahmed, S. S. Akhi, Md A. H. Fahad, M. I. Tusher, R. Chowdhury, and Md N. U. Rana, "Advancements and Challenges in Software Engineering and Project Management: A 2021 Perspective," Pathfinder Res., vol. 2, no. 1, p. 15, 2021.
- [21] Md A. H. Fahad and R. Chowdhury, "Evolution and Future Trends in Web Development: A Comprehensive Review," Pathfinder Res., vol. 3, no. 1, p. 13, 2022.
- [22] S. N. Akhter, R. Kumari, and A. Kumar, "Fertility booster effect of Asparagus recemosus against arsenic induced reproductive toxicity in Charles Foster rats," J. Adv. Zool., vol. 45, no. 5, 2024.
- [23] Z. Hashmi, R. Kumari, and A. Kumar, "Antidote effect of Bacopa Koneru against arsenic induced toxicity in rats," J. Adv. Zool., vol. 45, no. 5, 2024.
- [24] Z. Hashmi, R. Kumari, and A. Kumar, "Phytoremedial effect of Ocimum sanctum against arsenic induced toxicity in Charles Foster rats," J. Adv. Zool., vol. 45, no. 5, 2024. [Online]. Available: http://jazindia.com. ISSN: 0253-7214.
- [25] B. Kumari, P. Das, and R. Kumari, "Accelerated processing of solitary and clustered abasic site DNA damage lesion by APE1 in the presence of aqueous extract of Ganoderma lucidum," J. Biosci., vol. 41, pp. 265–275, 2016.
- [26] R. Kumari, R. K. Singh, N. Kumar, and R. Kumari, "Preparation of superfine Bael leaf nanopowder, physical properties measurements and its antimicrobial activities," Egypt. Chem. Bull., vol. 12, no. 4, pp. 284–297, 2023.

- [27] M. K. Sinha, R. Kumari, and A. Kumar, "Ameliorative effect of Ganoderma lucidum on sodium arsenite induced toxicity in Charles Foster rats," J. Adv. Zool., vol. 45, no. 5, 2024.
- [28] V. Rajavel, "Integrating power-saving techniques into design for testability of semiconductors for power-efficient testing," The American Journal of Engineering and Technology, vol. 7, no. 3, pp. 243–251, 2025.
- [29] V. Rajavel, "Novel machine learning approach for defect detection in DFT processes," ASRJETS-Journal, vol. 101, no. 1, pp. 325–334, Apr. 2025.
- [30] V. Rajavel, "Optimizing semiconductor testing: Leveraging stuck-at fault models for efficient fault coverage," Int. J. Latest Eng. Manag. Res. (IJLEMR), vol. 10, no. 2, pp. 69–76, Feb. 2025.
- [31] Md S. Miah and Md S. Islam, "Big Data Analytics Architectural Data Cut off Tactics for Cyber Security and Its Implication in Digital forensic," in Proc. 2022 Int. Conf. Futuristic Technol. (INCOFT), Belgaum, India, 2022, pp. 1–6.
- [32] M. A. Obaida, Md S. Miah, and Md. A. Horaira, "Random Early Discard (RED-AQM) Performance Analysis in Terms of TCP Variants and Network Parameters: Instability in High-Bandwidth-Delay Network," Int. J. Comput. Appl., vol. 27, no. 8, pp. 40–44, Aug. 2011.
- [33] A. Srivastava, "Use of Python in Data Science, Data Integration and Data Engineer," Int. J. Sci. Res. Eng. Manag., vol. 8, no. 7, 2024.
- [34] A. Srivastava, "AI in Healthcare and its Future," J. Artif. Intell. Cloud Comput., vol. 1, no. 1, pp. 1–2, Mar. 2022.
- [35] A. Srivastava, "Cloud Replacing Traditional Database," Int. J. Multidiscip. Res., vol. 7, no. 2, pp. 1–2, Mar.–Apr. 2025.
- [36] A. Srivastava, "Data Transformation Normalization to Denormalization in Cloud," Int. J. Core Eng. Manag., vol. 6, no. 7, pp. 249–252, 2020.
- [37] A. Srivastava, "Impact of AI/ML on Job Market and Skills Set and Health Industry," ESP J. Eng. Technol. Adv., vol. 4, no. 3, pp. 122–126, 2024.
- [38] A. Srivastava, "Integrated Snowflake with AWS and AWS ETL Migration," Int. J. Multidiscip. Res., vol. 7, no. 1, pp. 1–6, Jan.–Feb. 2025.
- [39] G. Kashyap, "Neural Architecture Search (NAS): Exploring the Trade-Offs In Automated Model Design and Its Impact on Deep Learning Performance," Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 13, no. 2, pp. 1–12, Mar.–Apr. 2025.
- [40] G. Kashyap, "Large Language Models and Their Ethical Implications: The role of models like GPT and BERT in shaping future AI applications and their risks," Int. J. Innov. Res. Creat. Technol., vol. 6, no. 6, pp. 1–5, Dec. 2020.
- [41] G. Kashyap, "AI for Epidemiology: Using AI to Predict and Track the Spread of Diseases like COVID-19," Int. J. Innov. Res. Multidiscip. Field, vol. 3, no. 6, pp. 1–10, Nov. 2021.
- [42] G. Kashyap, "AI for Threat Detection and Mitigation: Using AI to Identify and Respond to Cybersecurity Threats in Real-Time," Int. J. Sci. Res. Eng. Manag. Sci., vol. 6, no. 6, pp. 1–5, Nov. 2024.
- [43] G. Kashyap, "AI for Information Retrieval: Advancements in Search Engines and Chatbots through Deep Learning-Based Query Understanding," Int. J. Innov. Res. Creat. Technol., vol. 7, no. 1, pp. 1–7, Jan. 2021.
- [44] G. Kashyap, "Multilingual NLP: Techniques for Creating Models that Understand and Generate Multiple Languages with Minimal Resources," Int. J. Sci. Res. Eng. Manag. Sci., vol. 6, no. 12, pp. 1–5, Dec. 2024.
- [45] G. Kashyap, "Adversarial Attacks and Defenses: Investigating How AI Systems Can Be Manipulated Through Adversarial Inputs and Methods to Defend Against Them," Int. J. Innov. Res. Creat. Technol., vol. 7, no. 1, pp. 1–6, Feb. 2021.
- [46] G. Kashyap, "Reinforcement Learning in Dynamic Environments: Developing RL Algorithms That Can Adapt to Continuously Changing Environments," Int. J. Innov. Res. Creat. Technol., vol. 8, no. 4, pp. 1–10, Jul. 2022.
- [47] G. Kashyap, "Impact of AI on blockchain scalability: Solutions and trade-offs," Int. J. Core Eng. Manag., vol. 7, no. 1, pp. 197–202, 2022.

- [48] G. Kashyap, "Explainable AI (XAI): Methods and techniques to make deep learning models more interpretable and their real-world implications," Int. J. Innov. Res. Eng. Multidisciplinary Phys. Sci., vol. 13, no. 1, pp. 1–8, Jan. 2025.
- [49] G. Kashyap, "Knowledge transferring techniques: AI in learning transfer," Science Data & Learning Machine Intelligence Artificial Journal, vol. 4, no. 1, pp. 1898–1902, Dec. 2023.
- [50] G. Kashyap, "AI in blockchain-enabled healthcare systems: Transforming healthcare delivery and data security," ESP Journal of Engineering & Technology Advancements, vol. 3, no. 8, pp. 109, 2023.
- [51] G. Kashyap, "Knowledge graphs and NLP: Integrating structured knowledge into NLP systems for better reasoning and contextual understanding," Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 13, no. 2, pp. 1–7, Mar.–Apr. 2025.
- [52] A. Dixit, P. Dhanalakshmi, P. T. Rameshchandra, K. S. Chachlani, B. J. Kukreja, Ananya, et al., "Effectiveness of online vs. in-person periodontal health workshops for public awareness," J. Pharm. Bioall. Sci., vol. 16, pp. S777–S779, 2024.
- [53] A. Katariya and B. J. Kukreja, "A modification of fenestration technique (MOFT) to increase vestibular depth: A case series," Indian J. Dent. Res.
- [54] A. Katariya, B. J. Kukreja, and S. C. Dinda, "A microbiological study to evaluate the effect of different concentrations of coenzyme Q10 in inhibiting key pathogens of periodontitis," Eur. Chem. Bull., vol. 12, no. 10, pp. 5826–5843, 2023.
- [55] A. Singh, I. Menon, V. Aggarwal, B. J. Kukreja, P. Kukreja, and R. P. Singh, "Evaluation of quality of dental care and patient's perception for treatment received in dental institution in Moradabad, Uttar Pradesh," Int. J. Oral Care Res., vol. 3, no. 3, pp. 10–40, 2016.
- [56] D. Singhal, R. Mohan, K. Krishna, B. J. Kukreja, and A. Singh, "Genetics: Application in periodontal disease," TMU J. Dent., vol. 4, no. 4, pp. 143–148, 2017.
- [57] G. Yadavalli, P. Singhal, N. Gupta, B. J. Kukreja, B. Gupta, P. Kukreja, R. S. Makkad, and D. Mehta, "Evaluation of immunohistochemical markers in oral squamous cell carcinoma," Bioinformation, vol. 19, no. 13, pp. 1399–1404, 2023.
- [58] K. Arora, V. Dodwad, B. J. Kukreja, and S. Nagpal, "A comparative evaluation of the efficacy of glycine air polishing following scaling and root planing & scaling and root planing alone in the treatment of chronic periodontitis: A clinical study," J. Dent. Specialities, vol. 1, no. 2, pp. 47–54, 2013.
- [59] K. R. Anand, P. Kukreja, S. Kumar, B. J. Kukreja, and M. Sharma, "Nonsurgical treatment of ameloblastoma—Where are we?" Clin. Dent., vol. 7, pp. 26–28, 2014.
- [60] M. Gera, S. Chaudhary, A. S. Dhillon, V. Dodwad, S. Vaish, and B. J. Kukreja, "Pink in, black out—a clinical study," J. Dent. Specialities., vol. 4, no. 1, pp. 31–35, 2016.
- [61] M. Kumar, M. Goyal, B. Jha, S. Tomar, and A. Kushwah, "An innovative procedure for lip lengthening in a patient with a short upper lip and high angle skeletal class II pattern: A case report," J. Indian Orthod. Soc., vol. 30, pp. 1–8, 2021.
- [62] M. Ray, B. J. Kukreja, A. Katariya, et al., "Evaluation of buccal pad fat combined with demineralized freeze-dried bone allograft in treatment of Grade II furcation defects: A clinical radiographic study," World J. Dent., vol. 15, no. 6, pp. 459–467, 2024.
- [63] M. S. Dua, A. Dua, B. J. Kukreja, V. Dodwad, A. S. Sethi, and P. Kukreja, "Periodontal disease and preterm low birth weight," Int. J. Oral Care Res., vol. 2, no. 6, pp. 49–55, 2014.
- [64] P. Kukreja, A. F. Qahtani, M. F. Qahtani, M. F. Qahtani, and B. J. Kukreja, "Use of stem cells in tissue engineering and reconstruction of the maxillofacial region," Int. J. Res. Med. Sci., vol. 8, no. 7, pp. 2740–2745, 2020.
- [65] P. Mishra, S. Jha, D. Pandey, A. Thakur, and B. J. Kukreja, "Clinical and laboratory predictors of chronic immune thrombocytopenia in children: A study of 25 cases and review of literature," Int. J. Biomed. Adv. Res., vol. 10, no. 2, p. e5104, 2019.

- [66] P. Tyagi, V. Dodwad, B. J. Kukreja, and P. Kukreja, "A comparison of the efficacy of scaling and root planing with application of pomegranate chip, pomegranate gel and scaling and root planing in sufferers with adult periodontitis a prospective study," J. Indian Soc. Periodontol., vol. 25, pp. 41–46, 2021.
- [67] P. Verma, U. Gupta, V. Dodwad, B. J. Kukreja, and K. Arora, "Evaluation of the clinical efficacy of a new desensitizing toothpaste containing nano-crystalline hydroxyapatite in dentine hypersensitivity patients: A double-blind randomized controlled clinical trial," J. Dent. Specialities, vol. 1, no. 2, pp. 42–46, 2013.
- [68] R. Saleem, B. J. Kukreja, M. Goyal, and M. Kumar, "Treating short upper lip with 'Unified lip repositioning' technique: Two case reports," J. Indian Soc. Periodontol., vol. 26, pp. 89–93, 2022.
- [69] R. Sood, A. Gulri, U. Gupta, B. J. Kukreja, and V. Dodwad, "Efficacy of biodegradable xanthan-based chlorhexidine gel (Chlosite®) and 0.2% chlorhexidine irrigation following scaling and root planing for the treatment of chronic periodontitis," Int. J. Oral Care Res., vol. 2, no. 6, pp. 1–7, 2014.
- [70] S. Bansal, P. Kukreja, S. Kumar, M. Sharma, K. R. Anand, and B. J. Kukreja, "Anaesthetic efficacy of anterior middle superior alveolar nerve block for extraction of anterior maxillary anterior teeth," J. Dent. Specialities, vol. 2, no. 2, pp. 1–4, 2014.
- [71] S. Gupta, K. K. G. Rangappa, S. Rani, R. Ganesh, P. Kukreja, and B. J. Kukreja, "Periodontal and dentition status among psychiatric patients in Indore: A descriptive cross-sectional study," J. Contemp. Dent. Pract., vol. 23, no. 12, pp. 1260–1266, 2022.
- [72] S. S. Kumararama, M. Patil, B. J. Kukreja, M. Salkar, S. Verma, N. Pattnaik, et al., "Efficacy of antibiotics versus probiotics as adjuncts to mechanical debridement for the treatment of peri-implant mucositis," J. Pharm. Bioall. Sci., vol. 16, pp. S3389–S3391, 2024.
- [73] T. Bera, B. J. Kukreja, C. Sharma, V. V. Gupta, P. Patel, P. Singhal, et al., "Relative contribution of trabecular and cortical bone to primary implant stability: An in vitro model study," J. Pharm. Bioall. Sci., vol. 16, pp. S3427–S3429, 2024.
- [74] T. Mishra, B. J. Kukreja, R. Patel, M. Ghadage, P. Dalave, S. Kumari, et al., "In vitro evaluation of titanium exfoliation during simulated surgical insertion of dental implants," J. Pharm. Bioall. Sci., vol. 16, pp. S3383– S3385, 2024.
- [75] Y. M. Talib, W. N. Albalushi, M. D. Fouad, A. M. Salloum, B. J. Kukreja, H. Abdelmagyd, "Bilateral inverted and impacted mandibular third molars: A rare case report," Cureus, pp. 2–9, 2023.
- [76] S. Dahiya, U. Gupta, V. Dodwad, B. J. Kukreja, and P. Dasgupta, "The enzyme activity of alkaline phosphatase in gingival crevicular fluid of smokers and non-smokers with chronic periodontitis before and after phase I therapy," J. Pharm. Biomed. Sci., vol. 32, no. 32, pp. 1348–1353, Jul. 2013.
- [77] G. Kashyap, "Self-supervised learning: How self-supervised learning approaches can reduce dependence on labeled data," Int. J. Innov. Res. Creat. Technol., vol. 10, no. 4, pp. 1–10, Jul. 2024.
- [78] G. Kashyap, "Unsupervised learning for high-dimensional data: Advancements in unsupervised learning techniques like clustering, anomaly detection, and dimensionality reduction," Int. J. Leading Res. Publ., vol. 5, no. 12, pp. 1–10, Dec. 2024.
- [79] G. Kashyap, "Meta-learning: Learning to learn: Investigating how meta-learning algorithms can improve learning efficiency across tasks," Int. J. Sci. Res. Eng. Manag., vol. 8, no. 12, pp. 1–7, Dec. 2024.
- [80] G. Kashyap, "Infrastructure automation using Ansible and YAML for IT environment build in the health insurance industry," Int. J. Innov. Res. Creat. Technol., vol. 10, no. 6, pp. 1–10, Dec. 2024.
- [81] G. Kashyap, "Quantum machine learning: Exploring the intersection of quantum computing and AI," Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 13, no. 2, pp. 1–8, Mar.–Apr. 2025.
- [82] G. Kashyap, "AI for robustness and fairness: Addressing bias, fairness, and robustness in machine learning algorithms," Sci. Data Learn. Mach. Intell. Artif. J., vol. 1, no. 3, pp. 1–15, Jan. 2025.
- [83] A. Dixit, N. H. Parekh, R. Anand, N. Kamal, A. Kumar, and B. K. Badiyani, "An online survey to examine the dental students' awareness, knowledge, prevention, and early detection of oral cancer," J. Pharm. Bioall. Sci., vol. 15, pp. S984–S986, 2023.

- [84] S. S. Kumararama, S. Patel, N. H. Parekh, P. Bhate, B. J. Kukreja, T. Hazra, et al., "Investigating how frequently dental professionals conduct oral cancer screenings during routine dental checkups and the methods they use," J. Pharm. Bioall. Sci., vol. 16, p. S7835, 2024.
- [85] Shaiva Thakar, Niraj Kinariwala, Dhrusha Pandya, Nirav H Parekh, Niravkumar K Patel, Aastha Patel "Awareness and constraints towards the implementation of green dentistry amongst dental students and private practitioners of West India," J. Pharm. Bioall. Sci., vol. 15, pp. S1287–S1290, 2023.
- [86] M. Ranjan, Tushar, N. H. Parekh, A. Dixit, P. Rakshit, B. P. Agre, et al., "Investigating how cultural and socioeconomic factors influence oral cancer prevention behaviors, screening uptake, and treatment outcomes," J. Pharm. Bioall. Sci., vol. 16, pp. S786–S788, 2024.
- [87] A. Dixit, N. H. Parekh, R. Anand, N. Kamal, B. K. Badiyani, A. Kumar, et al., "A study to assess the awareness of adults about precancerous and cancerous lesions and the associated risk factors," J. Pharm. Bioall. Sci., vol. 15, pp. S977–S980, 2023.
- [88] M. Ranjan, A. Vashisht, J. K. Savita, S. Duseja, A. Sethi, R. Mohanty, N. H. Parekh, and M. Mehta, "Evaluating the tightness of proximal contact between natural tooth and adjacent implant-supported prosthesis," Bioinformation, vol. 20, no. 6, pp. 644–648, Jun. 2024.
- [89] S. A. Milu, S. Akter, A. Fathima, T. Talukder, I. Islam, and M. I. S. Emon, "Design and Implementation of hand gesture detection system using HM model for sign language recognition development," J. Data Anal. Inf. Process., vol. 12, no. 2, pp. 139–150, 2024.
- [90] S. S. Mahtab, R. A. Anonto, T. Talukder, A. Raihan, and I. Islam, "Etching Technologies in Semiconductor Manufacturing: A Short Review," in Proc. Int. Conf. Emerg. Appl. Mater. Sci. Technol., Cham: Springer Nature Switzerland, 2024, pp. 319–324.
- [91] T. Talukder, "Scanning Magnetometry With a Low Cost NV Diamond Quantum Sensor Probe," M.S. thesis, Morgan State Univ., 2024.
- [92] A. Srivastava, "Securing PHI Data in Healthcare," Sci. Data Learn. Mach. Intell. Artif. J., vol. 2, no. 4, pp. 1678–1679, Oct. 2024.
- [93] A. Srivastava, "Use of AI/ML in Data Security," J. Artif. Intell. Mach. Learn. Data Sci., vol. 2, no. 2, pp. 1–3, 2024.
- [94] A. Srivastava, "WFH Impact on Work Culture and Future of Work Place," Int. J. Innov. Res. Creat. Technol., vol. 8, no. 6, pp. 1–8, Nov. 2020.
- [95] A. Srivastava, "Impact of AI on Social Media and its Implication Mental Health," Int. J. Sci. Res. Eng. Manag., vol. 7, no. 7, 2023.
- [96] A. Srivastava, "WFH Impact on Work Culture and Future of Work Place," Int. J. Innov. Res. Creat. Technol., vol. 8, no. 6, pp. 1–8, 2022.