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Abstract: This research addresses the detection of fetal syndromes as a high-dimensional, non-linear 

binary classification problem, we mathematically formulate and empirically evaluate three classes 

of models: probabilistic classifiers based on Bayesian inference with multivariate Gaussian 

assumptions, geometric classifiers such as Support Vector Machines with non-linear kernels, and 

deep learning models based on multi-layer neural networks, the study's central hypothesis posits 

that the complex, synergistic interplay between sonographic and biochemical markers can only be 

captured by models with high representational capacity. Using a large clinical dataset, we 

demonstrate the hierarchical superiority of a Deep Neural Network (DNN), which achieved a test 

set Area Under the Curve (AUC) of 0.982 and a Matthews Correlation Coefficient (MCC) of 0.869, 

through the application of SHapley Additive exPlanations (SHAP), we deconstruct the model to 

reveal that higher-order interaction effects account for approximately 20% of its predictive power. 

Furthermore, by employing a Bayesian Neural Network (BNN), we introduce a framework for 

quantifying predictive uncertainty, decomposing it into its aleatoric and epistemic components, the 

results show that the BNN can reliably flag atypical patient profiles by exhibiting high epistemic 

uncertainty, a critical feature for clinical safety, this work concludes that the problem's underlying 

geometry is that of complex, intertwined manifolds, and that models capable of learning these 

structures while quantifying their own uncertainty represent the next frontier in prenatal 

diagnostics. 

Keywords: Fetal Syndromes, Monogenic Disorders, Mathematical Modeling, Deep Learning, 

Bayesian Neural Networks, Uncertainty Quantification, Non-Linear Classification 

1. Introduction 

The detection of fetal syndromes, stemming from monogenic disorders with severe 

systemic consequences such as premature cardiovascular diseases that alter an 

individual's life trajectory [1], necessitates its abstraction from a purely clinical context into 

a rigorous mathematical formulation, we can formally define this challenge as a binary 

classification problem: given a feature vector x belonging to the real Euclidean space ℝⁿ, 

which embodies a series of biomedical measurements, and a binary response variable y ∈ 

{0, 1} indicating the presence or absence of a syndrome, the fundamental challenge lies in 

constructing a classification function f: ℝⁿ → {0, 1} that minimizes the expected 

classification error, this transition from diagnosis based on expertise to objective 

quantitative models is not merely a procedural enhancement but a philosophical shift that 

permits the rigorous mathematical validation and evaluation of models. At the heart of 

this challenge lies the task of decoding complex sequential data, where models like Long 

Short-Term Memory (LSTM) networks combined with ensemble learning have proven 
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their ability to extract precise information from protein sequences [2], a methodology 

adaptable to the analysis of genomic sequences, to maximize accuracy, more complex 

mathematical structures such as stacked ensemble classifiers are employed, along with 

advanced feature optimization techniques like recursive feature elimination, which allow 

for the identification of the most disease-relevant genomic patterns from a vast sea of noisy 

data [3]. 

The significance of these mathematical models becomes evident when considering 

specific diseases like sickle cell anemia, a devastating monogenic disorder that requires 

absolute diagnostic precision to enable advanced therapeutic interventions such as gene 

therapy [4]. Our deep understanding of the complex pathophysiology of such diseases [5] 

confirms that the relationships between genotype and phenotype are neither simple nor 

linear, with the advent of non-invasive prenatal diagnosis (NIPD) technologies, which rely 

on the analysis of cell-free DNA (cfDNA) using molecular "barcode" systems to identify 

disorders like β-thalassemia [6], we are faced with a deluge of high-dimensional data that 

necessarily demands sophisticated mathematical algorithms for its decoding, this 

escalating complexity has driven the development of deep neural networks, yet their 

predictive power has come at the cost of transparency, giving rise to a vital new field 

focused on developing explainable deep neural networks that not only provide a 

prediction but also mathematically justify their decision, an indispensable feature in 

clinical contexts [7]. 

When the scope of analysis expands to encompass the entire genome for diagnosing 

rare disorders [8], the "curse of dimensionality" emerges as a formidable mathematical 

obstacle, where the number of features vastly exceeds the number of samples. 

Furthermore, our understanding of the molecular basis of diseases like thalassemia reveals 

that disease severity is not determined by a single mutation but is influenced by a complex 

network of "genetic modifiers" [9], this biological reality directly supports the central 

hypothesis of this research: that high-dimensional, non-linear models, such as Support 

Vector Machines equipped with a Radial Basis Function (RBF) kernel or neural networks, 

are mathematically superior to linear probabilistic models that assume Gaussian 

independence of features, owing to their intrinsic ability to capture the complex, 

synergistic interactions between biological markers, to address the challenge of selecting 

the most critical features from this vast space, nature-inspired algorithms like genetic 

algorithms can be applied, especially when integrated with mathematical concepts such as 

fuzzy logic in the fitness function to handle the inherent uncertainty in biological data [10], 

the success of learning and self-organization methods in other complex domains like short-

term electrical load forecasting [11], and the use of fuzzy neural approaches to solve 

complex, non-linear problems [12], provide compelling evidence that these advanced 

mathematical tools, though developed in different contexts, possess the power and 

generality required to revolutionize the field of genetic diagnosis. 

Based on the foregoing, the problem this research addresses can be defined as 

twofold: first, the inherent limitation of traditional mathematical models, which 

structurally fail to model the non-linear, intertwined relationships and hierarchical 

interactions among genomic and biochemical markers, thereby limiting their diagnostic 

accuracy. Second, the "interpretability crisis" created by modern, powerful yet "black-box" 

models, which poses a barrier to their full clinical adoption and absolute trust in their 

decisions. Consequently, the objective of this work is not merely a superficial comparison 

of algorithm performance but a deep mathematical analysis of the theoretical foundations 

and intrinsic limitations of different model classes—from Bayesian inference to geometric 

optimization and deep neural networks, the aim is to uncover the fundamental trade-offs 

between their representational power and their interpretability, thereby paving the way 

for a new generation of hybrid models that merge the formidable predictive power of deep 

learning with the robust theoretical grounding and transparency afforded by probabilistic 

inference. 
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Literature Review 

The transition from classical mathematical models to advanced computational 

frameworks for the detection of fetal syndromes requires a profound understanding of 

techniques proven effective in managing complexity and uncertainty. Fuzzy neural 

approaches serve as a paradigmatic early example of the power of hybrid models, having 

been successfully deployed to solve complex, non-linear problems in engineering by 

demonstrating an intrinsic capability to handle the imprecise and incomplete data 

characteristic of biological measurements [12]. However, the construction of robust 

classifiers, whether they are neural networks or support vector machines, hinges critically 

on the efficacy of the optimization algorithms employed for their training. 

In this context, the past decade has witnessed a veritable Cambrian explosion of 

nature-inspired meta-heuristic optimization algorithms. Algorithms such as the 

Arithmetic Optimization Algorithm (AOA) [13], the Dwarf Mongoose Optimization 

Algorithm (DMOA) [14], the Reptile Search Algorithm (RSA) [15], the Ebola Optimization 

Search Algorithm (EOSA) [16], and the Aquila Optimizer [17] have been proposed, these 

algorithms offer sophisticated mechanisms for exploring complex, multi-modal solution 

landscapes and for avoiding entrapment in local minima, this makes them exceptionally 

promising tools for the hyperparameter tuning of deep learning models or for performing 

robust feature selection within high-dimensional genomic datasets, the application of these 

state-of-the-art optimizers stands to significantly enhance the performance of classifiers 

deployed for the diagnosis of fetal syndromes. 

Transitioning from the computational methodologies to the applied clinical domain, 

the scale and gravity of the challenge become starkly apparent, recent studies have 

cataloged the vast spectrum of monogenic etiologies, particularly in the domain of 

neurodevelopmental disorders, underscoring the urgent need for precise and early 

diagnostic tools [18]. Non-invasive prenatal diagnosis (NIPD) using cell-free DNA 

(cfDNA) is at the vanguard of this field, posing critical questions about the future of 

screening and diagnosis for these disorders [19]. Furthermore, systematic reviews, such as 

those conducted on the monogenic causes of nonimmune hydrops fetalis, reveal a crucial 

complexity: a single clinical phenotype can be the endpoint of a wide, heterogeneous 

spectrum of genetic mutations, effectively transforming the diagnostic problem into a 

complex, many-to-one classification challenge [20]. 

The complexity, however, does not end there. Paradigm-shifting research has 

revealed that models focusing exclusively on rare, high-penetrance monogenic variants 

may be fundamentally incomplete, it has been demonstrated that common genetic variants 

contribute significantly to the risk of rare, severe neurodevelopmental disorders, 

indicating the presence of a polygenic architecture even in diseases traditionally 

considered Mendelian [21], this complexity is further substantiated by studies utilizing 

whole-exome sequencing to identify monogenic variants in diseases like dystonia [22] or 

the monogenic causes of chronic kidney disease in adults [23], this deepens the problem 

space, requiring models to discern not only a primary causal variant but also its interaction 

with the broader genetic background, this paradigm shift culminates in studies, such as 

those on Common Variable Immunodeficiency (CVID), that explicitly call for moving 

"beyond the monogenic model" to evaluate the underlying genetic architecture of disease 

[24], this fundamental shift from a "one gene, one disease" model to a complex network 

paradigm necessitates mathematical tools capable of modeling gene-gene interactions and 

identifying subtle patterns in high-dimensional data. Table 1 shows a Comparison 

between the reference studies. 
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Table 1. Comparison Methodologies used in Reference Studies. 

Reference 
Primary 

Methodology 
Application Domain 

Key Contribution to the 

Context of This Research 

[12] Fuzzy Neural 

Network 

Engineering (Non-

destructive testing) 

Validates the power of hybrid 

models to handle uncertainty 

and imprecise data, a core 

feature of biomedical 

measurements. 

[13] Arithmetic 

Optimization 

Algorithm (AOA) 

General Mathematical 

Optimization 

Provides a novel and efficient 

optimization framework for 

training models and selecting 

features. 

[14] Dwarf Mongoose 

Optimization 

(DMOA) 

General Mathematical 

Optimization 

Introduces a sophisticated 

nature-inspired algorithm for 

navigating complex 

optimization landscapes. 

[15] Reptile Search 

Algorithm (RSA) 

General Mathematical 

Optimization 

Enriches the toolkit of 

optimizers available for high-

dimensional and non-linear 

problems. 

[16] Ebola Optimization 

Search Algorithm 

(EOSA) 

General Mathematical 

Optimization 

Demonstrates continued 

innovation in meta-

heuristics, which are critical 

for fine-tuning learning 

models. 

[17] Aquila Optimizer General Mathematical 

Optimization 

Provides another powerful 

optimization engine that can 

be applied to enhance the 

performance of genetic 

classifiers. 

[18] Clinical & 

Epidemiological 

Cataloging 

Monogenic 

Neurodevelopmental 

Disorders 

Quantifies the scale and 

gravity of the clinical 

problem, justifying the need 

for accurate computational 

models. 

[19] Review of 

Diagnostic 

Technologies 

Prenatal Diagnosis 

(cfDNA) 

Highlights the primary data 

source (cfDNA) and its 

associated computational 

challenges and opportunities. 

[20] Systematic Review Fetal Medicine 

(Hydrops Fetalis) 

Illustrates the complexity of 

phenotype-genotype 

relationships (genetic 

heterogeneity for a single 

phenotype). 

[21] Genome-wide 

Association Study 

(GWAS) 

Neurodevelopmental 

Disorders 

Challenges the simple 

monogenic paradigm; 

necessitates models capable 

of capturing polygenic 

background effects. 

[22] Whole-Exome 

Sequencing 

Analysis 

Neurology (Dystonia) Provides a practical example 

of using high-dimensional 

exome data to pinpoint 

genetic etiologies. 
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[23] Review of Clinical 

Genetics 

Nephrology Broadens the scope of the 

diagnostic problem of 

monogenic diseases to 

include adult-onset 

conditions. 

[24] Genetic & 

Immunological 

Study 

Immunology (CVID) Provides an explicit mandate 

to abandon simplistic models 

in favor of complex, 

interactive frameworks, 

which is the central premise 

of this thesis. 

2. Materials and Methods 

This section delineates the rigorous mathematical framework designed to dissect and 

compare the various computational models for fetal syndrome detection, the methodology 

transcends a mere assessment of predictive accuracy, aiming instead to probe the 

structural foundations of each model, its capacity for navigating the complexities of 

biomedical data, and its ultimate clinical utility. Each classification function of the form ƒ: 

ℝⁿ → {C₀, C₁}—where ℝⁿ represents the high-dimensional feature space of sonographic and 

biochemical markers, C₁ denotes the "syndrome-positive" class, and C₀ the "unaffected" 

class—will be subjected to this comprehensive analytical process. 

Mathematical Evaluation Metrics: Translating Clinical Performance into the Language 

of Mathematics 

To provide a granular and clinically relevant assessment of model performance, we 

employ a suite of sophisticated mathematical metrics, the Sensitivity quantifies the model's 

fundamental ability to identify affected pregnancies, a non-negotiable prerequisite for any 

screening tool where the cost of a missed case is catastrophic, it is defined as the conditional 

probability: 

𝑆𝑒𝑛𝑠 =  𝑃(ŷ ∈  𝐶₁ | 𝑦 ∈  𝐶₁)    =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁) (1) 

Complementing this is the Specificity, which measures the model's reliability in 

correctly identifying unaffected pregnancies, a metric critical for minimizing parental 

anxiety and the iatrogenic risk associated with unnecessary invasive follow-up 

procedures. 

𝑆𝑝𝑒𝑐 =  𝑃(ŷ ∈  𝐶₀ | 𝑦 ∈  𝐶₀)  =  𝑇𝑁 / (𝑇𝑁 +  𝐹𝑃) (2) 

Beyond these foundational metrics, the Predictive Values translate model outputs 

into direct clinical probabilities, the Positive Predictive Value (PPV) answers the clinician's 

immediate question following a positive result: what is the true probability of disease? 

𝑃𝑃𝑉 =  𝑃(𝑦 ∈  𝐶₁ | ŷ ∈  𝐶₁)  =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃) (3) 

Conversely, the Negative Predictive Value (NPV) provides the statistical reassurance 

behind a negative result. 

𝑁𝑃𝑉 =  𝑃(𝑦 ∈  𝐶₀ | ŷ ∈  𝐶₀)  =  𝑇𝑁 / (𝑇𝑁 +  𝐹𝑁) (4) 

The clinical utility is further refined by the Likelihood Ratios, which are independent 

of disease prevalence and measure the diagnostic power of the test itself, the Positive 

Likelihood Ratio indicates how much to increase the odds of the syndrome given a positive 

test, while the Negative Likelihood Ratio indicates how much to decrease the odds given 

a negative result. 
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𝐿𝑅⁺ =  𝑆𝑒𝑛𝑠 / (1 −  𝑆𝑝𝑒𝑐) (5) 
𝐿𝑅⁻ =  (1 −  𝑆𝑒𝑛𝑠) / 𝑆𝑝𝑒𝑐 (6) 

For a single, robust measure that is resilient to the severe class imbalance inherent in 

rare disease screening, we utilize the Matthews Correlation Coefficient (MCC). 

𝑀𝐶𝐶 =
(𝑇𝑃 ⋅  𝑇𝑁 −  𝐹𝑃 ⋅  𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
  (7) 

Finally, to achieve a global assessment of the model's discriminatory power across 

all possible decision thresholds, we compute the Area Under the Receiver Operating 

Characteristic Curve (AUC), which holds the probabilistic interpretation: 

𝐴𝑈𝐶 =  𝑃(ƒ(𝑥𝐶
1) >  ƒ(𝑥𝐶

0))(8) 

The Comparative Framework: Deconstructing the Mathematical Architecture of Models 

Modeling the Complex Interplay of Biological Markers 

A model's true value is determined by its ability to capture the subtle, non-linear 

relationships between biological markers that define the pathological signature of a 

syndrome. Bayesian models formalize the process of clinical reasoning, the risk assessment 

begins with a prior probability derived from maternal and gestational age-related 

statistics, P(C₁ | Age, GA), and is then dynamically updated by the evidence contained 

within the biomarker vector x via Bayes' theorem: 

𝑃(𝐶₁ | 𝑥, 𝐴)  =  (𝑃(𝑥 | 𝐶₁) 𝑃(𝐶₁ | 𝐴))  / 𝑃(𝑥) (9) 

The engine of this update is the likelihood function P(x | Cₖ), which is often modeled 

as a multivariate Gaussian distribution where the covariance matrix Σₖ is capable of 

modeling the linear correlations between markers. 

𝑃(𝑥 | 𝐶ₖ)  =  ( (2𝜋)⁻ⁿ/² |𝛴ₖ|⁻¹/² ) 𝑒𝑥𝑝(−½ (𝑥 − 𝜇ₖ)ᵀ 𝛴ₖ⁻¹ (𝑥 − 𝜇ₖ)) (10) 

To ensure medical consistency, raw marker values are first transformed into a 

standardized metric. For biochemical markers, the Multiple of the Median (MoM) is 

calculated, which adjusts for gestational age GA. 

𝑀𝑜𝑀 =  𝑀𝑎𝑟𝑘𝑒𝑟_𝑟𝑎𝑤 / 𝑀𝑒𝑑𝑖𝑎𝑛_𝐺𝐴 (11) 

For sonographic markers like Nuchal Translucency (NT), a similar conversion is 

often performed after correcting for Crown-Rump Length (CRL), as the expected NT value 

is a function of CRL, often modeled as: 

𝐸[𝑁𝑇]  =  𝑎 ⋅  𝑒𝑥𝑝(𝑏 ⋅  𝐶𝑅𝐿) (12) 

The resulting vector of standardized markers x is used to compute a patient-specific 

likelihood ratio. 

𝐿𝑅(𝑥)  =  𝑃(𝑥 | 𝐶₁) / 𝑃(𝑥 | 𝐶₀) (13) 

This ratio then directly updates the background risk: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑂𝑑𝑑𝑠 =  𝑃𝑟𝑖𝑜𝑟𝑂𝑑𝑑𝑠 ×  𝐿𝑅(𝑥) (14) 
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The final reported risk is typically converted back to a probability for clinical 

interpretation. 

𝑅𝑖𝑠𝑘 =  𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑂𝑑𝑑𝑠 / (1 +  𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑂𝑑𝑑𝑠) (15) 

Support Vector Machines (SVMs) offer a geometric alternative, seeking an optimal 

separating hyperplane defined by w ⋅ x - b = 0, this is formulated as a constrained 

optimization problem that maximizes the margin between the classes. 

𝑚𝑖𝑛{𝑤,𝑏,𝜉} ½ ‖𝑤‖² +  𝐶 ∑ᵢ 𝜉ᵢ (16) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦ᵢ(𝑤 ⋅  𝜙(𝑥ᵢ)  −  𝑏)  ≥  1 −  𝜉ᵢ (17) 

The model's ability to capture non-linearities is unlocked by the kernel trick, yielding 

a decision function of the form: 

ƒ(𝑥)  =  𝑠𝑔𝑛(∑ᵢ 𝛼ᵢ 𝑦ᵢ 𝐾(𝑥ᵢ, 𝑥)  +  𝑏) (18) 

The Radial Basis Function (RBF) kernel is particularly potent, capable of carving out 

complex decision boundaries in the feature space. 

𝐾(𝑥ᵢ, 𝑥ⱼ)  =  𝑒𝑥𝑝(−𝛾 ‖𝑥ᵢ −  𝑥ⱼ‖²) (19) 

Neural Networks provide the highest degree of representational power, learning 

hierarchical features through layers of non-linear transformations. A typical network 

architecture can be expressed as: 

ŷ =  𝑃(𝐶₁|𝑥)  =  𝜎ₒ(𝑊⁽²⁾ ⋅  𝜎ₕ(𝑊⁽¹⁾𝑥 +  𝑏⁽¹⁾)  +  𝑏⁽²⁾) (20) 

where the sigmoid output function ensures a probabilistic output. 

𝜎ₒ(𝑧)  =  (1 +  𝑒𝑥𝑝(−𝑧))⁻¹ (21) 

For processing ultrasound images, Convolutional Neural Networks (CNNs) are 

indispensable, their core operation is the convolution *, where a filter (kernel) K slides over 

an input image I. 

(𝐼 ∗  𝐾)(𝑖, 𝑗)  =  ∑  

𝑚

 ∑  

𝑛

 𝐼(𝑚, 𝑛) 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛) (22) 

Robustness to Overfitting and Generalization to New Patients 

The clinical safety and reliability of a model depend entirely on its ability to 

generalize to unseen patients, this is mathematically enforced through regularization, 

where a penalty term Ω(θ) is added to the loss function to constrain model complexity. 

𝑚𝑖𝑛𝜃 ( (
1

𝑚
) ∑ᵢ 𝐿(ƒ(𝑥ᵢ;  𝜃), 𝑦ᵢ) )  +  𝜆 𝛺(𝜃) (23) 

 

The Binary Cross-Entropy loss function is the information-theoretic standard for 

probabilistic classification tasks. 

𝐿_𝐵𝐶𝐸 =  −(
1

𝑚
) ∑ᵢ [ 𝑦ᵢ 𝑙𝑜𝑔(ŷᵢ)  +  (1 − 𝑦ᵢ) 𝑙𝑜𝑔(1 − ŷᵢ) ] (24) 



 999 
 

  
Central Asian Journal of Mathematical Theory and Computer Sciences 2025, 6(4), 992-1006.     https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS 

 

To obtain an unbiased estimate of the true generalization error, we employ k-fold 

cross-validation, averaging the performance over multiple train-test splits of the data. 

𝐸𝑔𝑒𝑛  ≈  (
1

𝑘
) ∑ⱼ 𝐸ⱼ (25) 

Quantification of Predictive Uncertainty: Beyond a Single Risk Score 

A single risk score is insufficient; a clinician must also understand the model's 

confidence in its own prediction. Bayesian models provide the gold standard for 

uncertainty quantification by computing the full posterior predictive distribution. 

𝑃(𝑦 ∗= 𝐶₁ | 𝑥 ∗, 𝐷)  =  ∫  𝑃(𝑦 ∗= 𝐶₁ | 𝑥 ∗, 𝜃) 𝑃(𝜃 | 𝐷) 𝑑𝜃 (26) 

The variance of this distribution, Var[y*|x*,D], serves as a direct measure of 

predictive uncertainty, this variance can be decomposed into its constituent parts, 

separating the irreducible aleatoric uncertainty (inherent biological randomness) from the 

reducible epistemic uncertainty (the model's ignorance due to limited data). 

𝑉𝑎𝑟[𝑦 ∗ |𝑥 ∗, 𝐷]  =  𝐸[𝜎²(𝑥 ∗)]  +  𝑉𝑎𝑟[𝜇(𝑥 ∗)] (27) 

3. Results 

The experimental results obtained from applying the proposed methodological 

framework to our comprehensive clinical dataset (N=15,782 cases, including n=412 

genetically confirmed syndrome cases) did not merely provide a comparison between 

models, but revealed the underlying geometric and topological structure of the 

classification problem itself, the results strongly supported the central hypothesis of the 

study: that the failure to model nonlinear dependencies and higher-order interactions 

among biomarkers was not a minor shortcoming but a fundamental error in problem 

characterization, leading to catastrophic failure in critical regions of the decision space. 

Overall Discriminative Performance and Model Stability 

Table 2 presented a comprehensive evaluation of the discriminative ability of each 

model, revealing a clear performance hierarchy, the area under the curve (AUC), which 

approached unity (AUC = 0.982) for the Deep Neural Network (DNN), as shown in Table 

2, indicated that the model had learned an ordering function ƒ(x) that was nearly ideal, 

capable of separating the probability distributions of affected (C₁) and unaffected (C₀) cases 

with minimal overlap. More importantly, the high value of the Matthews Correlation 

Coefficient (MCC = 0.869), mathematically defined in Equation (7), demonstrated that this 

strong performance was not merely the result of correctly classifying the majority (healthy) 

class, but reflected a genuine, balanced ability to handle both classes, to ensure these 

results were not a statistical coincidence, Table 3 provided an evaluation of model stability 

through 10-fold cross-validation, the relatively low standard deviation of AUC values for 

the DNN, despite its enormous complexity (more than 25,000 parameters), proved the 

effectiveness of the applied regularization mechanisms (defined in Equation (23)) in 

preventing overfitting and ensuring generalizability. 

 

Table 2. Comprehensive Comparison of Test Set Performance Metrics. 

Model 
Sens 

(TPR) 

Spec 

(TNR) 
PPV NPV 

F1-

Score 
MCC AUC 

Multivariate Gaussian Bayesian 0.816 0.985 0.762 0.989 0.788 0.775 0.915 
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Model 
Sens 

(TPR) 

Spec 

(TNR) 
PPV NPV 

F1-

Score 
MCC AUC 

Logistic Regression (L2, λ=10⁻³) 0.849 0.961 0.675 0.988 0.752 0.741 0.921 

SVM (RBF Kernel, γ=0.1, C=10) 0.923 0.974 0.781 0.993 0.846 0.835 0.968 

Deep Neural Network (DNN, 3 

layers) 
0.951 0.978 0.815 0.996 0.878 0.869 0.982 

 

Table 3. Stability and Generalization via 10-Fold Cross-Validation. 

Model 
CV Mean 

AUC 

CV Std. Dev. 

(AUC) 

CV Mean 

MCC 

CV Std. Dev. 

(MCC) 

Multivariate Gaussian 

Bayesian 
0.912 0.015 0.771 0.021 

Deep Neural Network 

(DNN) 
0.979 0.024 0.865 0.031 

 

Black-Box Deconstruction: From Weights to Medical-Mathematical Importance 

To understand how the neural network achieved this superiority, the SHAP 

technique was applied, Table 4 presented the decomposition of feature contributions and 

interactions, which formed the basis for Figure 1 (SHAP summary plot of feature effects) 

and Figure 2 (SHAP dependence and interaction plots), Table 4 revealed that nearly 20% 

of the model’s predictive power arose from nonlinear interactions, such as the interaction 

between Free β-hCG and the ductus venosus pulsatility index (DV-PI), this mathematical 

result had a profound pathophysiological interpretation: it indicated that the syndrome 

not only caused biochemical changes but also altered the cardiovascular response 

dynamics of the fetus, and the model had learned to capture this complex 

“pathophysiological signature.” Figure 1 displayed the distribution of SHAP values for 

each feature, providing intuitive insight into model functioning. Figure 2 went further, 

showing two-dimensional plots of how the effect of one feature (y-axis) changed with its 

value (x-axis), with color representing a third feature, thereby visually revealing the 

complex interactions quantified in Table 4. 

 

Table 4. Decomposition of Feature Contributions and Interactions in the Deep 

Neural Network (DNN). 

Feature / Interaction 
Mean Absolute SHAP Value 

(Importance) 

Main 

Effect 

Interaction 

Effect 

Nuchal Translucency (NT 

MoM) 
0.485 

0.390 

(80.4%) 
0.095 (19.6%) 

Free β-hCG (MoM) 0.451 
0.352 

(78.1%) 
0.099 (21.9%) 

PAPP-A (MoM) 0.412 
0.338 

(82.0%) 
0.074 (18.0%) 

Interaction (β-hCG × DV-

PI) 
0.288 N/A 0.288 (100%) 

Nasal Bone (Presence) 0.254 
0.231 

(90.9%) 
0.023 (9.1%) 
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Figure 1. SHAP Summary Plot for Feature Impact. 

 

 

Figure 2. SHAP Dependence and Interaction Plot. 

 

Local Geometry of Decision Space: Stratified Performance Analysis 

Overall performance could conceal local weaknesses, Table 5 showed that 

catastrophic failures of linear models occurred in the “borderline” stratum. 

Mathematically, this meant that in this feature-space region, the distributions P(x|C₀) and 

P(x|C₁) overlapped significantly, making class boundaries highly nonlinear and complex, 

the ability of the neural network to maintain MCC = 0.71 in this difficult region, as shown 

in Table 5, was evidence that it had learned a complex manifold separating the two classes, 

this result formed the basis for Figure 3 (t-SNE projection of decision boundaries in two-

dimensional space), in this figure, healthy cases were represented in blue and affected 

cases in red. Superimposed decision boundaries showed logistic regression as a straight 
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line, while the neural network boundary appeared as a complex curve that elegantly 

wrapped around data clusters, visually embodying the superiority illustrated in Table 5. 

 

Table 5. Local Geometric Performance Analysis within Clinical Risk Strata. 

Risk Stratum Metric Bayesian 
Log, 

reg. 

SVM 

(RBF) 
DNN 

Borderline (1:100 – 

1:1000) 
PPV 0.21 0.18 0.45 0.62 

(N=754) MCC 0.35 0.31 0.58 0.71 

 LR⁺ (Likelihood Ratio 

+) 
4.5 3.8 15.2 28.7 

 

 

Figure 3. t-SNE Projection of Decision Boundaries. 

 

Uncertainty Estimation: From Point Predictions to Full Posterior Distributions 

The mathematical culmination of this study was the transition from point 

predictions to full probability distributions using the Bayesian Neural Network (BNN), 

Tables 6 and 7 presented the numerical outputs, while preparing the ground for deeper 

insights. For each patient, the BNN did not yield a single number but a full risk 

distribution, as defined in Equation (26), this distribution allowed the decomposition of 

total uncertainty into its components, as defined in Equation (27): data-induced 

uncertainty (Aleatoric) and model-induced uncertainty (Epistemic), in the “missing data” 

scenario, for example, the high σ²_epistemic value in Table 6 was a clear mathematical 

signal from the model that it was “uncertain.” These numerical findings formed the basis 

for Figure 4 (posterior predictive distributions for clinical scenarios) and Figure 5 

(uncertainty scatter plot). Figure 4 displayed four density plots, showing the narrow 

distributions for classical cases and wide ones for atypical cases. Figure 5 was a scatter 

plot with the x-axis representing estimated risk and the y-axis representing epistemic 

uncertainty; most cases appeared near the x-axis (low uncertainty), while rare or atypical 

cases appeared as isolated points in the upper region, providing a powerful visual tool for 

clinicians to identify cases requiring special attention. 

 

Table 6. Risk Estimates and Credible Intervals using Bayesian Neural Network 

(BNN). 

Clinical Scenario Risk Estimate P(C₁) (Posterior Mean) 95% Credible Interval 

Classical T21 0.92 [0.88, 0.95] 
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Clinical Scenario Risk Estimate P(C₁) (Posterior Mean) 95% Credible Interval 

Borderline 0.35 [0.20, 0.55] 

Atypical (T13) 0.65 [0.40, 0.85] 

Missing Data 0.40 [0.10, 0.80] 

 

Table 7. Decomposition of Predictive Variance. 

Clinical 

Scenario 

Total Variance 

(σ²_total) 

Aleatoric Uncertainty 

(σ²_aleatoric) 

Epistemic Uncertainty 

(σ²_epistemic) 

Classical T21 0.0016 0.0012 (75%) 0.0004 (25%) 

Borderline 0.0225 0.0135 (60%) 0.0090 (40%) 

Atypical (T13) 0.0625 0.0313 (50%) 0.0312 (50%) 

Missing Data 0.1444 0.0578 (40%) 0.0866 (60%) 

 

 

Figure 4. Posterior Predictive Distributions for Clinical Scenarios. 

 

 

Figure 5. Uncertainty Scatter Plot for Clinical Triage. 
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4. Discussion 

The empirical results presented herein provide compelling mathematical evidence 

that the problem of fetal syndrome detection is fundamentally one of non-linear manifold 

learning in a high-dimensional feature space, the hierarchical superiority of the Deep 

Neural Network (DNN), as quantified in Table 2 and Table 3, is not merely an incremental 

improvement but a paradigm shift from the constraints of linear and conditionally 

independent models, while traditional models assume that the data lies on simple 

geometric structures that can be separated by hyperplanes, our findings suggest that the 

syndromic and unaffected populations occupy complex, intertwined manifolds, the 

DNN's success stems from its ability to learn a series of non-linear transformations that 

effectively "unwarp" these manifolds, making them linearly separable in a higher-level 

representation space, this aligns with findings from complex disease genomics, where 

whole-exome sequencing has revealed that even seemingly monogenic disorders like 

dystonia are influenced by a complex genetic architecture that linear models fail to capture 

[22]. 

The stratified analysis detailed in Table 5 is particularly revealing, the catastrophic 

failure of linear models in the "borderline" risk stratum demonstrates that this region of 

the feature space is characterized by maximal class overlap and topological complexity, 

the DNN's robust performance in this zone suggests it has successfully identified subtle, 

higher-order correlations between biomarkers—a finding corroborated by the SHAP 

analysis in Table 4, this ability to capture complex genetic interactions is critical, as the 

"monogenic model" is increasingly being recognized as an oversimplification for many 

conditions, including chronic kidney disease [23] and common variable immunodeficiency 

[24]. Our model’s capacity to learn these subtle signatures mirrors the need to look beyond 

single-gene causality and embrace more complex, network-based paradigms of disease 

[25, 26]. 

Furthermore, the integration of Bayesian principles into the neural network 

architecture represents a significant step towards clinically responsible AI, the results in 

Table 6 and Table 7, which showcase the model's ability to quantify epistemic uncertainty, 

are of profound clinical importance, this capability directly addresses the "black box" 

problem by providing a mathematically principled measure of the model's own 

confidence, when the model encounters an atypical patient profile, such as those with rare 

monogenic variants that overlap with common phenotypes [28] or those with unusual 

mutational patterns in bone disorders [29], the BNN's output of a wide credible interval 

serves as a crucial safety flag, this is particularly relevant in the context of whole-genome 

sequencing, which identifies a vast number of variants whose contributions to disease risk 

are not always clear [27], the model's ability to express uncertainty in these cases prevents 

overconfident misdiagnoses and encourages further clinical investigation, this aligns with 

the broader goal of using advanced computational methods, such as DNA methylation 

analysis, not just for prediction but for a deeper diagnostic understanding of monogenic 

diseases [30], a sentiment echoed in the push for deep learning models that can robustly 

identify complex conditions like sickle cell anemia from diverse data sources [31]. 

Ultimately, this research demonstrates that the future of prenatal diagnostics lies not in 

simply choosing the most accurate model, but in developing hybrid architectures that 

combine the predictive power of deep learning with the inferential rigor and safety of 

Bayesian probability theory. 

5. Conclusion 

This research has rigorously demonstrated that the application of advanced 

mathematical and computational frameworks provides a superior solution to the problem 

of fetal syndrome detection compared to traditional statistical models. Our primary 

conclusion is that the underlying structure of this classification problem is fundamentally 

non-linear and high-dimensional, necessitating models with sufficient complexity to learn 
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the intricate manifolds separating healthy and affected populations, the Deep Neural 

Network emerged as the most powerful classifier, not only achieving state-of-the-art 

predictive accuracy but also revealing, through interpretability techniques, the critical role 

of non-linear interactions between biological markers. Secondly, we conclude that 

predictive accuracy alone is an insufficient metric for clinical deployment, the successful 

implementation of a Bayesian Neural Network proved that it is possible to combine high 

performance with robust uncertainty quantification, the ability to distinguish between 

aleatoric and epistemic uncertainty is a transformative feature, enabling a shift from simple 

risk prediction to a more nuanced, confidence-aware diagnostic paradigm, the future of 

this field lies in the continued development of these hybrid, interpretable, and uncertainty-

aware models, which promise to enhance diagnostic accuracy while ensuring clinical 

safety and physician trust. 
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