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Abstract:  GA-based system is introduced in this research, used for optimizing the design of neural 

networks when traditional optimizing methods fail due to the high dimensionality of configuration 

spaces. Using the framework, parameters including the number of layers, neurons per layer, 

activation methods and regularization are represented in a fixed-length chromosome, allowing 

evolutionary algorithms to control the changes in the architecture through many generations. A 

composite fitness function is used which considers precision as much as the number of parameters, 

supporting the development of architectures that function well across different data. I ran my 

experiments with the three popular datasets called MNIST, Fashion-MNIST and CIFAR-10. It was 

shown that manually constructed models and those randomly searched failed to come close to the 

performance of our GA-optimized models which achieved 96.1% validation accuracy and reduced 

the number of parameters to only 180,000. When compared to existing NAS methods, our suggested 

approach is better at using parameters and is more reliable, since its performance is more consistent 

across several training trials. Furthermore, it was clear that these architectures could generalize well 

and transfer knowledge from one dataset to another. The results suggest that Genetic Algorithms 

are effective for automated neural architecture search and can be smoothly incorporated into both 

resource-sensitive and hybrid AutoML approaches. 

Keywords: Neural Architecture Search, Genetic Algorithms, Evolutionary Computing, Deep 

Learning Optimization, Model Complexity, AutoML. 

1. Introduction 

The architecture of today’s artificial intelligence systems relies heavily on Artificial 

Neural Networks (ANNs). They are responsible for both accurate facial recognition and 

advanced language translation, along with many other impressive abilities they have 

proven while learning from vast amounts of data. They perform well in various uses such 

as classifying images, detecting speech and driving vehicles without manual control, 

because they are capable of approximating any function. Yet, how neural networks work 

largely depends on their architecture which consists of the way layers, neurons, activation 

functions and connectivity are put together. Choices in the structure of a neural network 

often decide how well it learns, how well it fits real-world data and how long it takes to 

train. [i]  
Getting the right structure for a neural network is not easy. When building a neural 

network, you need to pick many hyperparameters such as: the number of hidden layers, 

the size of each layer, the kinds of activation functions, the dropout rates and ways to add 
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regularization. Because of these features, the search space is large and hardly takes the 

form of a smooth or convex region. Because this area is so complex, it is nearly impossible 

to hand-tune everything as things get hard and the number of parameters in a model 

increases. Additionally, much of architecture is influenced by simple guidelines, earlier 

practice and common design conventions that usually fit specific topics or examples well, 

but not always others. [ii]  
 

A schematic representation of a multilayer artificial neural network (MLP) 
 

For many years, both researchers and users have relied on grid search and random 

search to deal with the inefficiency of designing manually. Grid search checks all the 

settings in a specific grid, running every possible combination, it can find. Even though 

grid search is very detailed, it has a problem known as the curse of dimensionality; as you 

add more hyperparameters, the space for searching increases quickly, making grid search 

too costly and inefficient for deep neural networks. Conversely, random search samples 

from a set distribution which makes it both faster and possible to scale the method. 

Nevertheless, as it is not guided, its finding of good solutions becomes unreliable in 

complex models because architectures of high quality are not very common or well 

organized in the search space. [iii]   
Due to these problems, people are turning more to metaheuristic methods and 

particularly Evolutionary Computing, as viable options for searching neural architectures. 

Out of these EC methods, the Genetic Algorithm (GA) is considered the most important, 

as it follows ideas from natural selection and genetics. In GAs, each generation of solutions 

evolves, represented as chromosomes, using operators known as selection, crossover and 
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mutation. Because of this process, the algorithm is able to find valuable combinations of 

settings that human methods might overlook. [iv]   
A diagram illustrating the integration of a Genetic Algorithm with a neural network 

architecture. The GA evolves neural configurations through selection, crossover, and 

mutation to optimize the structure and performance of the network. 
To use GAs for neural network optimization, designers must first encode the 

network’s structure, including layers, neurons and activation functions, into a 

chromosome of a fixed or adjustable size. With this representation, each GA candidate is 

assessed according to validation accuracy and model complexity. The process of selecting 

and breeding the most fit designs helps the algorithm move closer to the best or most 

suitable final design. [v]  
The benefits of GAs are connected to how well they explore options and exploit the 

results. Rather than the blind choices made in grid or random search, GAs use what they 

learn from earlier generations to find better architectures. Also, since SGD is stochastic, it 

often helps avoid being stuck in local minima which trouble non-convex optimization 

landscapes. That is why GAs work especially well for neural architecture search, 

particularly when evaluating models requires much computing time and there are not 

many smooth gradients in the space. [vi]  
Studies from the past year have shown that GAs are effective at improving 

feedforward, convolutional and recurrent network architectures with different datasets. 

It has been observed that using hybrid approaches connecting GAs with reinforcement 

learning or surrogate modeling can lead to improved both results and performance. As a 

result, more people are considering evolutionary algorithms to be a smart and often 

superior choice over the classic neural network designs. 

For this reason, this research develops a GA-based method for automating neural 

network architecture optimization. Applying evolutionary computing to identify 

excellent neural network configurations on the MNIST and CIFAR-10 data sets, the 

authors want to give a dependable and replicable way to create neural architectures. This 

way of working not only increases the success of classification models but also improves 

their interpretability and overall strength, indicating GA and EC can have a big impact on 

the field of automatic machine learning. [vii]   
Literature Review 

Overview of Neural Architecture Search (NAS) Techniques 

A growing number of experts are using Neural Architecture Search (NAS) to speed 

up and improve the process of designing neural networks. For a long time, building 

neural networks meant practitioners had to rely on knowledge of the field and experiment 

manually, making the process slow and not ideal. The goal of NAS is overcome these 

issues by checking all the architectures in a prechosen space which allows it to find 

excellent designs for a given task with minimal need for input from people [viii]   
In NAS, the main techniques are those based on reinforcement learning (RL), 

gradients or evolutionary algorithms (EAs). RL-based methods train a network to decide 

on the best settings for the model to get the highest validation performance. These 

approaches work well but need a lot of time and hardware to be effective which limits 

their use in applications with limited resources  [ix] 
On the plus side, gradient-based methods such as DARTS turn the original discrete 

architecture search space into a continuous one. So, optimizing model architecture is 

possible using gradient descent. While using DARTS needs less computation, it tends to 

fit too well to the validation set and can create architectures that do not work well on other 

data sets  [x] 
Using ideas from natural selection, crossover and mutation, Evolutionary Algorithms 

provide a third approach to NAS. Rather than working through sequential steps, EAs 

keep a group of candidate architectures that all progress and change in parallel. By 

choosing this method, we help improve diversity in searching and sturdiness towards 

getting stuck in poorly optimized architectures  [xi] 
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Genetic Algorithms for Neural Architecture Optimization 

Popular neural network optimizations have come from using Genetic Algorithms 

(GAs), one sub-type of Evolutionary Algorithms (EAs). Usually, GA-based NAS systems 

use chromosomes to represent each architecture, coding information such as the number 

of layers, neurons, activation types and ways the neurons communicate. Then, like natural 

selection, successful architectures are chosen to create new ones through combining and 

changing their features  [xii] 
The way the genome is arranged in GA-based NAS is one of its most important design 

choices. With direct encoding, all parts of the network are shown in the chromosome, 

giving more control over its design. But it means that the created chromosomes are long 

and complex, mainly when using deeper networks and this adds time and effort to both 

the evaluation and the search task  [xiii] 
Because direct encoding has limitations, some researchers have switched to indirect 

encoding. By using these methods, general rules for architecture are encoded, allowing 

for network designs that are possibly both smaller and more capable of scaling. In 

addition, indirect encoding allows for the identification of modular or repeated classes of 

structures that are usually present in successful deep learning approaches  [xiv] 
The kind of genetic operators used has a strong effect on how well the search method 

performs. With tournament or roulette wheel selection, designs that work best are usually 

picked to reproduce, increasing their chance of being chosen. By using crossover, the 

algorithm can transfer beneficial traits of both parents, while mutation helps it not end up 

converging too soon  [xv] 
A common way GAs are applied in NAS is by using regularized evolution which 

means the eldest individuals are removed rather than the ones with the worst results. It 

results in people looking for new ways of life and helps protect them from stagnation. 

Image classification tests demonstrate that applying regularization to evolution results in 

higher accuracy and more efficient systems than those found by either random searching 

or reinforcement learning based NAS  [xvi] 
Limitations of Current GA-Based NAS Approaches 

Even though GA-based NAS can be powerful, they don’t solve all the challenges 

involved. How to manage increasing scale is a serious issue. For more complicated tasks, 

the number of architecture designs to explore explodes, so you have to check a lot more 

of them. Because many evaluation methods require partially training a neural network, 

larger applications may find the cost of computing too high  [xvii] 
A further problem is the risk that models may fit the data too closely. As part of the 

evolution, architectures are compared based on their performance measured on a 

validation dataset. Should the population not resemble the true structure of the data, the 

developed networks might fall into overfitting, making their performance inaccurate for 

new examples  

In addition, the system’s findings are usually complicated and hard to grasp. Not 

being open about how they work can prevent them from being used where people need 

to see reasons for decisions, for example, in health or finance. Active research aims to 

insert interpretability into NAS by creating algorithms that recognize and reward models 

with clear and simple structure  
Future Research Directions 

There is potential in coming up with hybrid ways that link GAs’ world-covering 

abilities with local methods’ rapid solution finding. As a case in point, GAs might be used 

to plan large structures and gradient descent helps to optimize the internal parts. It lowers 

the amount of computing needed and still ensures excellent results  

With resource-aware NAS now being used, architectures are being designed more 

carefully for the hardware on which they will be used. When memory usage, latency and 

power are added to the fitness function, GA-based NAS comes up with networks that 

work well and are also useful for edge and embedded systems  
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Researchers are also investigating using transfer learning as a part of the GA-based 

NAS approach. Having access to this information lets the algorithm make faster and better 

progress in various optimization tasks. 

2. Materials and Methods 

Problem Definition 

In this work, we use Genetic Algorithms to help automate the process of designing 

neural network architecture. Deep learning architecture must often be configured 

manually, by trial-and-error testing of various parameters which can reduce results when 

new datasets are used. Instead, to deal with this issue, the problem is now stated as an 

optimization challenge focused on boosting classification accuracy and lowering the 

complexity of the model at the same time. 

The architecture search space was carefully defined to encapsulate a diverse range of 

feasible models: 

1. Number of hidden layers: variable from 1 to 5. 

2. Neurons per layer: discrete set {32, 64, 128, 256, 512}. 

3. Activation functions: ReLU, Sigmoid, Tanh, Leaky ReLU. 

4. Regularization: Dropout rates between 0.1 and 0.5; L2 penalty between 1e-5 

and 1e-3. 

The fitness function combined validation accuracy with a complexity penalty to 

avoid overfitting and over-parameterization: 

 
 total 𝑃

 410
⋅ 𝛼 −  val 𝐴 = 𝐹 

regularization weight set to 0.05: 𝛼 

total number of model parameters: total 𝑃 

validation accuracy after training: val 𝐴 

This formulation encourages models that are both performant and computationally 

efficient. 

GA-based Optimization Framework 

We developed a unique GA framework, with GA, to change and grow neural network 

configurations over generations. For each model, I used a fixed chromosome length to 

help replicate and compute results efficiently. 

Chromosome Design 

Each chromosome was composed of 10 genes: 1–5: Neurons per layer (0 indicates 

inactive layer) 6: Activation function code (0–3) 7: Dropout rate (mapped to {0.1, 0.2, ..., 

0.5}) 8: L2 regularization level (mapped to 5 discrete values) 9: Batch size code (32, 64, or 

128) 10: Optimizer type (SGD, Adam, RMSprop) 

This representation allows for flexible control of depth, capacity, and training 

dynamics. 

Genetic Operations 

The genetic algorithm employed a tournament selection method with tournament 

size = 3. 

Crossover: Two-point crossover was used with probability =  𝑐𝑝0.9 to mix genetic 

material between top individuals 

Mutation: Gaussian mutation was introduced with rate =  𝑚𝑝0.2, applying noise to 

continuous. parameters such as dropout or L2 rate while discrete parameters mutated via 

random substitution 

Fitness Evaluation 

After ten training epochs, the model for each chromosome was judged according to 

top-1 validation accuracy and used cross-entropy loss to help it learn. To save time during 

training without changing the evaluation results, early stopping was used, with a patience 
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of 3 set. The training and evaluation process was improved using TensorFlow pipelines 

and each dataset was tested independently using that system. 

Datasets and Preprocessing 

The benchmark datasets utilized in this research cover a range of image complexity 

and semantic diversity: 

1. MNIST: 60,000 training and 10,000 test grayscale images of handwritten digits 

(28×28 pixels). 

2. Fashion-MNIST: same structure as MNIST but includes images of clothing 

items, offering increased variability in visual patterns. 

3. CIFAR-10: 50,000 training and 10,000 test RGB images (32×32 pixels) across 10 

general object categories. 

4. Data preprocessing involved the following steps: 

5. Normalization: All pixel values were scaled to the [0, 1] range. 

6. One-hot encoding: Applied to class labels. 

7. Reshaping: Flattened for dense-based networks or preserved spatial dimensions 

for convolutional variants. 

8. Data augmentation: Applied to CIFAR-10 only, involving random horizontal 

flips, slight rotations, and zoom to simulate real-world variations and enhance 

generalization. 

Each dataset was divided into training (80%), validation (10%), and test (10%) sets 

using stratified sampling. 

Additional Considerations: Constraint Handling and Robustness Testing 

For models to be useful, constraint handling was made part of the fitness function. 

These models could not have more than one million parameters; if they did, they had 5% 

cut from their final validation accuracy. 

In addition, to measure how robust the top 5 architectures were, they were retrained 

3 times with varied random seeds and tested against datasets that were kept away from 

any training. A note was made of how much the evolved models’ results varied from one 

run to another. Any structures showing more than 2% fluctuation in error (high variance) 

were labeled unstable and did not make it to the shortlist. 

3. Results and Discussion 

Here, we discuss the results from optimizing the GA-based neural network 

architecture, exploring changes in accuracy, model details, stability and comparison to 

other known approaches. The test results highlight the strong balance produced by 

evolutionary computing. 

Evolution of Performance Across Generations 

Conducting the optimization for 30 generations led to improvements in how well the 

model could identify or detect wallets. It was found in Figure 1 that the average accuracy 

at the first generation was 82%, but it rose with each new generation. The algorithm was 

proven able to guide the evolution by the 30th generation, where the architecture reached 

an accuracy of 96.1%. 
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Figure 1. Validation Accuracy Across Generations 

 

Meanwhile, as models got more accurate, they were also made simpler which can be 

seen in Figure 2. Initially, the model structures needed roughly 280,000 parameters, but 

the final generation had an average of 120,000 parameters. Because of this, it is confirmed 

that the fitness function helps by discouraging excessive complexity in the designs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Model Complexity Across Generations 

 

The results show that not only did the GA help with performance, but it also 

improved the efficiency of the architecture which is necessary for using the network in 

practical environments. 

Comparison with Traditional NAS Methods 

The GA-optimized models were compared to models found by using manual design, 

random search and grid search. The findings are shown in both Table 1 and Figure 3. 
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Table 1. Accuracy and Parameter Count by Search Method 

Method Accuracy (%) 
Parameters 

(Thousands) 

Manual Design 89.2 220 

Random Search 91.5 310 

Grid Search 92.3 290 

GA (This Study) 95.7 180 

 

Figure 3. Accuracy Comparison with Other NAS Methods 

 

Evolutionary exploration is highlighted here, since the GA method provided the 

highest accuracy (95.7%) with the fewest parameters. On the other hand, traditional 

approaches typically produce lots of parameters or use them in random ways without 

much connection. 

Dataset-Specific Observations 

Each dataset introduced its own issues which were successfully resolved using the 

GA’s ability to adapt.  

MNIST was solved with shallow models (just 2 hidden layers) and 64 or 128 neurons 

by activating the layers with the ReLU function, recording 99.15% accuracy. Since the data 

is not noisy, I used dropout to a very minor extent. 

The fact that Fashion-MNIST images have multiple patterns made experts choose 

deeper networks (3–4 layers) and apply dropout at a rate of 0.3–0.4. The method achieved 

a higher accuracy of 93.7% than the baseline MLPs. 

Since CIFAR-10 is most difficult, it needed up to 5 layers, medium-size neurons and 

naturally required Leaky ReLU. While that choice made the problem burden, the model 

still achieved one of the top results with 83.9%. 

By achieving these results, it is shown that GA can automatically match architectures 

to the properties of the dataset. 

Comparison with Related Studies 

A comparison with recent scientific studies shows that the GA-based framework is 

both more efficient and more accurate. 

The team of Real et al., in 2019,  [xviii]   managed 94.6% accuracy from regularized 

evolution using roughly 300,000 parameters. 

Liu et. al.   [xix]  discovered that 95.1% used hybrid NAS architectures, yet all required 

convolutional layers and >350K parameters. 

Even with just 180K parameters, this study could achieve high accuracy (95.7%) and 

be more efficient compared to previous research. 

Unlike studies done before, this research took into account both how accurate and 

how complex a system was which made the resulting designs more deployment-savvy. 
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Robustness and Transferability 

Different sets of initialization values were tested by running each of the top five 

architectures three separate times. The reliability of the results was good, with a deviation 

in accuracy of ±0.58%. Architectures with more than 2% of input variability were not 

included in the final result. 

When applied to MNIST, architectures optimized on Fashion-MNIST maintained 

accuracy of over 98.2%, proving they can adapt well to new data. 

Also, adding minor changes to the data did not cause models to lose their stability. 

4. Conclusion 

This research has proven that Genetic Algorithms (GAs) are an effective way to use a 

metaheuristic to improve how neural networks (NNs) are structured. By casting the 

architecture search as looking through many interactive dimensions and combining 

accuracy and complexity as objectives, the study addressed the difficulties faced in using 

traditional design and search strategies. 

The method set up depth, neuron distribution, activation functions and regularization 

in the system as fixed-length chromosomes using a GA-based framework. The way the 

design worked allowed neural networks to change over generations and stayed simple, 

thanks to a fitness function that considered both performance on data and model 

complexity. Using tournament selection, two-point crossover and Gaussian mutation 

enabled both exploring new regions and fine-tuning existing ones, so the evolved models 

outperformed their manually engineered or randomly chosen counterparts. 

The adaptability and flexibility of the evolutionary technique were clearly shown in 

the results from MNIST, Fashion-MNIST and CIFAR-10 standard datasets. Not only did 

the results show excellent accuracy for these models (up to 96.1%), but the final ones also 

kept their model size light, requiring only 180,000 parameters. The new method is much 

better than random or grid search which usually resulted in models that were both large 

and not very accurate. 

The study’s strength is how completely it has examined how both performance and 

complexity have changed over the years. As the network got much smaller over time and 

the accuracy did not drop, it shows that the penalty built into the fitness stopped the 

growth of unnecessary units. Testing the robustness of these models confirmed that the 

projections are accurate, show stable results and are reliable over several training trials. 

When put next to related works such as those done by Real et al. (2019) and Liu et al. 

(2021), our framework had a better ratio of accuracy to the number of parameters. Unlike 

previous findings that took a lot of computing power or complex configurations, this work 

stayed straightforward and was easy to calculate while getting better results. 
This research further helps by highlighting the practical needs of deploying the 

system. When maximum model size is added as a constraint and interpretation is 

prioritized with structural regularity, the architectures are ready for practical use and 

even edge computing situations. 

The framework also showed that its results could be applied more broadly and 

transferred to additional situations. Results show that the solutions found with evolved 

architectures achieved strong accuracy in various related fields and tasks. 
Key Contributions Summarized 

A framework using genetic algorithms that flexibly improves neural networks by 

ensuring accuracy and compactness are balanced. 

Results were confirmed using several datasets and outperformed the results obtained 

manually or by using traditional NAS. 

Policies that continued to provide strong results with stable structure over time. 

Interpreting and deploying the model is easier thanks to explicit guidelines on the 

model’s complexity. 
Future Work 

Although the findings are encouraging, more research is needed in several directions. 
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Hybridization of GAs with reinforcement learning can help convergence and make it 

easier to improve detailed settings of hyperparameters. 

After studying fully-connected networks, future studies could test if GA-based 

approaches work well for tasks such as object detection and forecasting with 

convolutional or recurrent neural networks. 

Further expansion of the fitness function, by including energy, fast inference or 

hardware considerations, might help make designed models more practical. 

Adding surrogate models that estimate fitness is a fast way to reduce costs when 

working with complex or huge datasets. 

Overall, the study demonstrates that Genetic Algorithms serve both as a trustworthy 

option and an effective replacement for neural architecture search. The automation of 

design and production of high-quality, easy-to-use, flexible models through evolutionary 

computing support the progress of AutoML and AI of the future. 
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