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Abstract: This study examines how effective Padé approximation methods are for solving Lane-

Emden type differential equations. These are special types of equations that are often used in 

astronomy, like when understanding the structure of some stars and how gases act in round shapes. 

These equations are hard because there’s an issue at the beginning point and they get more 

complicated due to the polytropic index. Traditional power series methods usually don't work well 

beyond a small range because they are only effective within specific limits. Padé approximants are 

a kind of math tool that can give more accurate estimates. They are effective because they can be 

used in many different situations and show what happens accurately at places where functions act 

strangely. In this study, we apply different Padé approximations of different levels to the Lane-

Emden equation. They are evaluated based on how correct they are, how fast they find a solution, 

and how well they use computer resources. Computer simulations are performed, and the results 

are compared with older techniques, such as the Runge-Kutta method and standard series solutions. 

The comparison shows that Padé approximants are better because they give accurate results faster 

over larger areas, especially when the polytropic index goes up. But there are still issues with 

picking the best orders for the estimates and handling more complicated nonlinear problems. The 

results show that Padé approximation is a helpful way to understand things while being efficient 

with computers. This makes it a helpful tool in both ideas and real life, especially when regular 

methods don’t work well due to unusual situations or high computer expenses. 

Keywords: Lane-Emden Equation, Padé Approximation, Nonlinear Differential Equations, 

Polytropic Models, Numerical Analysis 

1. Introduction 

The Lane-Emden equation is a well-known math formula that shows how things 

change over time. It is often used in space science and other fields of physics. It is very 

important to understand how polytropic stars, white dwarfs, and gas spheres with a 

constant temperature are built inside.  This equation allows scientists to analyze the 

behavior of cohesive spherical fluids when they are steady and in equilibrium. But solving 

the Lane-Emden equation is not easy because it has a problem at the starting point and 

includes complicated terms.  In some special situations, the Lane-Emden equation has 

exact solutions that can be calculated.  These few special cases, which usually relate to 

certain values of the polytropic index, are used as standards to check how well numerical 

and approximation methods work.  For general values, it's not possible to find exact 

solutions, so researchers use numerical methods or approximations to get helpful results.  

Power series solutions can be used close to the starting point, but they have a limited range 
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of accuracy and might not provide good results everywhere else.  To get around these 

issues, simpler methods like the Padé approximation have become very popular.  Padé 

approximants are a way to change a power series into a fraction made up of two 

polynomials: one on top (numerator) and one on the bottom (denominator)[1]. This change 

allows the approximation to be effective even in areas where a regular series solution isn’t 

correct. Padé approximants often handle strange behavior better and provide more 

accurate results, especially near important points.  In recent studies, scientists have been 

examining the role of various types of Padé approximations in simplifying the solution 

process for the Lane-Emden equation. The goal is to see if this method can give better 

results, faster answers, and easier math than older methods like the Runge-Kutta method 

or basic power series. This study explores different ways to use Padé approximations to 

solve a kind of math equation known as Lane-Emden differential equations. It examines 

how well different levels of Padé approximants perform and compares their results to 

those from other methods. We check how quickly it works, how correct it is, and how well 

it uses computer power. The study includes images and numbers to compare known 

solutions and to see how effective the Padé method is compared to the best results. This 

research highlights how important it is to pick the correct level of the Padé approximant 

based on the details of the equation.  Simple approximations are user-friendly but tend to 

lack precision, whereas more complex methods can provide greater accuracy, albeit with 

increased difficulty in application. Finding the right balance is important for real-world 

use, especially in computer astrophysics, where both speed and accuracy are needed. In 

simple terms, this study wants to explain how Padé approximation methods can help us 

solve Lane-Emden type equations. It examines various examples to assist researchers who 

want to use semi-analytical methods for challenging nonlinear issues in science and 

engineering. 

2. Materials and Methods 

Overview of Padé Approximation 

Padé guess could be a valuable math strategy that appears a work as a division made 

of two polynomials. In differentiate to normal polynomial approximations, such as Taylor 

arrangement that delineate capacities as unbounded wholes of progressively higher 

control terms, Padé guess utilizes an elective strategy utilizing divisions. This distinction 

makes a difference Padé approximants to be much more exact and to work superior, 

particularly near to focuses where the work has abnormal or complicated behaviour. This 

strategy is particularly supportive for tackling extraordinary math issues that have 

complex parts or points where they gotten to be vague, just like the Lane-Emden 

conditions utilized in space science models[2]. One huge advantage of the Padé estimation 

is that it can speak to a work more precisely over a bigger extend than a abbreviated Taylor 

arrangement. A Taylor arrangement works well generally close the point where it starts, 

but Padé approximants as a rule deliver way better comes about over a more extensive 

extend. Typically, since the level headed shape can appear capacities in a more flexible 

way. Having a polynomial within the foot portion of a division makes a difference the 

approximation appear how shafts and other uncommon focuses influence the work being 

assessed. Since of this, the Padé estimation is seen as distant an improved way to get it 

how a work carries on, indeed when it's difficult to portray the work utilizing fair 

polynomials[3].   

Another key highlight of the Padé strategy is that it works well when the Taylor 

arrangement doesn't meet or takes as well long to focalize. This happens frequently in 

numerous regular issues, particularly when working with capacities that alter rapidly or 

have breaks in them Padé guess understands this issue by changing a control arrangement 

that does not include up well into a less complex division (sound work) that includes up 

speedier and needs less terms. Typically, an important part of computer programs, where 

being quick and exact is vital. By utilizing less terms to reach a particular exactness, Padé 
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approximants make calculations quicker and make numerical strategies more dependable. 

When fathoming differential conditions, particularly dubious ones just like the Lane-

Emden conditions, Pade estimation is exceptionally important. These conditions more 

often than not have an uncommon point at the root, making it difficult for numerous 

numerical strategies to work well. Analysts can discover a arrangement by beginning with 

an arrangement strategy, like utilizing control arrangement, and after that utilizing Pade 

change. This permits them to form the arrangement work indeed exterior the normal 

limits[4]. This strategy makes a difference discover near arrangements in zones where 

customary arrangement strategies do not work well or can't be utilized. So, Pade 

approximants offer assistance interface easy-to-work-with equations and computer 

strategies, making them more exact and valuable. Pade estimation is exceptionally 

valuable, particularly when matched with other comparable strategies. For occasion, when 

we utilize strategies just like the A domain Decay Strategy, the Homotropy Annoyance 

Strategy, or the Differential Change Strategy to form an arrangement we can use the Pade 

approximant on that arrangement. This makes a difference the arrangement get way better 

and work for a more extensive extend of values. This combination has been exceptionally 

supportive in tackling troublesome nonlinear conditions. It combines the leading parts of 

different strategies to make a more grounded and more exact way to fathom issues. These 

combined methods have ended up prevalent as of late since they are versatile and work 

well in several zones of material science, building, and applied math. From a hypothetical 

point of see, the quality of Pade estimation is that it can speak to capacities in ranges where 

a Taylor arrangement would not work well. It essentially amplifies the work so that it can 

be caught on way better and more precisely over a bigger extend. This makes the strategy 

valuable additionally based on strong math. Also, among the different kinds of Pade 

approximants, the inclining ones where the beat portion (numerator) has the same degree 

as the foot portion (denominator) usually donate the leading blend of effortlessness and 

accuracy. These strategies are preferred in physical and building work because they are 

straightforward and work well[5]. 

One-Dimensional Differential Transform 

The differential transform of the function y(x) is described like this: 

𝑌(𝑘) =
1

𝑘!
[
𝑑𝑘𝑦(𝑥)

𝑑𝑥𝑘
]

𝑥=0

                         (1) 

In math and computer use, especially when solving differential equations with 

transform methods, a transformed function is very important.  In equation (1), y(x) usually 

stands for the main function related to the problem.  This function is based on a real-world 

situation, like in physics, engineering, or math, and depends on the variable x.  This 

function is usually hard to use directly, especially when it doesn't behave in a straight line 

or when we try to solve equations mathematically.  To make solving easier, we change the 

original function into a new one called Y(k)[6].  

This changed function is usually called the T-function, and it exists in a different area, 

often using a new variable called k.  The main goal of changing the original function y(x) 

into Y(k) is to make it easier to solve complicated equations.  Strategies just like the 

Differential Change Strategy (DTM) and Laplace Change are commonly utilized for this 

reason.  These methods change the processes of differentiation and integration into simpler 

math forms that are easier to work with.  After finding the solution in the new form, the 

last step is to get back the original function y(x)[7]. This is done by using the inverse 

transform method.  The differential inverse transform of Y(k) is a method used to get back 

the original function y(x) from its transformed version.  This step is important because we 

want to show the answer using the original variable x.  The inverse transform means 

adding up a set of values based on the numbers in the transformed function, following 

certain rules based on the method you use.  This method helps to easily and correctly find 
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the solution, especially for initial value problems and nonlinear ordinary differential 

equations[8]. 

𝑦(𝑥) = ∑ 𝑥𝑘𝑦(𝑥)

∞

𝑘=0

                            (2) 

From (1) and (2), we obtain 

𝑌(𝑥) = ∑
𝑥𝑘

𝑘!

∞

𝑘=0

[
𝑑𝑘𝑦(𝑥)

𝑑𝑥𝑘
]

𝑥=0

                         (3) 

The differential change strategy could be a broadly utilized expository procedure 

within the field of connected science and designing for tackling differential equations, 

especially nonlinear standard differential conditions. This strategy depends on the basic 

thought of changing a differential condition into a set of logarithmic conditions that are 

less demanding to control and unravel. At the heart of the differential change strategy lies 

a conceptual association with the Taylor arrangement extension. Particularly, the strategy 

draws motivation from the Taylor arrangement by developing the arrangement of a work 

as a entirety of weighted terms including powers of the autonomous variable. In any case, 

not at all like the classical Taylor arrangement strategy, the differential change approach 

does not require the typical computation of derivatives at each step, which is frequently a 

computationally seriously and logically requesting errand[9]. 

 Rather than explicitly calculating higher-order subordinates, the differential change 

strategy computes them iteratively through repeat relations. These relations are built up 

by changing the first differential equation into a comparing set of conditions within the 

change space. This change space is characterized through a set of operational rules that 

interface the initial work, ordinarily spoken to by lowercase letters, with its transformed 

counterpart, spoken to by capitalized letters. This notational refinement is used reliably all 

through the strategy to clearly differentiate between the first work in its physical or time 

domain and the changed work that exists within the logarithmic or assistant space. For 

occasion, on the off chance that the first work is denoted by y within the physical space, its 

changed adaptation within the differential change strategy is spoken to by Y within the 

changed space.   The iterative handle utilized within the differential change strategy is 

fundamental to its productivity and common sense. Instead of taking progressive 

subordinates of the first work, the strategy builds each changed term utilizing as of now 

calculated lower-order terms. This recursive nature makes it especially appropriate for 

taking care of issues including nonlinear terms, where conventional methods may struggle 

or require noteworthy typical control[10]. 

The repeat relations are inferred from the structure of the differential condition itself, 

and once the changed work is completely set up, the initial work can be reproduced 

through a reverse change. This reverse prepare includes summing the changed terms 

increased by powers of the free variable, taking after a structure comparable to a truncated 

Taylor arrangement. The result is an inexact but often highly exact arrangement to the 

initial differential condition, communicated in a arrangement shape that meets quickly in 

numerous viable cases.   Additionally, one of the key highlights of the differential change 

strategy is that it complies with a set of essential scientific operation rules, which are 

methodically characterized and summarized in operational tables. These rules oversee 

how changes are connected to scientific operations such as expansion, duplication, and 

separation. For case, when two capacities are included within the physical space, their 

comparing changes are too included within the change space. Additionally, when a work 

is increased by a steady, its change is additionally duplicated by the same consistent. These 

rules frame the spine of the strategy and are essential for deciphering complex expressions 

in the original differential conditions into sensible logarithmic relations within the change 

space[11]. 
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 These numerical operation rules are frequently organized, as appeared in what is 

regularly alluded to as Table 1 in writing. This table incorporates the change rules for 

fundamental operations such as scalar increase, work expansion, item of capacities, and 

subordinates of capacities. The presence of such a table altogether streamlines the 

application of the strategy since it kills the require for clients to determine the change rules 

each time from scratch. Instep, by alluding to the table, one can methodically apply the 

fitting change rule to each term within the unique condition and quickly build the changed 

condition.   Within the setting of this consider, the differential change strategy has been 

utilized to illuminate Lane-Emden sort differential equations, which are known for their 

particular nature and nonlinear characteristics[12]. 

By utilizing the lowercase and capitalized documentation for unique and changed 

capacities, separately, and by leveraging the iterative structure of the strategy, we point to 

develop exact and solid surmised arrangements. The choice of this strategy is defended by 

its demonstrated victory in taking care of similar classes of issues, where conventional 

numerical strategies may experience challenges due to singularities or nonlinearities. 

Furthermore, the orderly system of the differential change method, supported by the 

change rules and recurrence relations, offers a clear and organized pathway for inferring 

arrangements.   In outline, the differential transform strategy gives a robust and proficient 

approach to solving complex differential conditions. Its establishment within the Taylor 

series extension, combined with an iterative computation of changed terms and upheld by 

well-defined numerical operation rules, makes it a viable and flexible instrument in 

numerical modeling. The clarity of documentation and the organized utilize of change 

tables assist improve its ease of use and consistency, especially in connected areas such as 

material science, designing, and computational science[13]. 

 

Table 1. The elemental operations of one-dimensional diHerential change strategy. 

Original function Transformed function 

𝑦(𝑥)  =  𝑢(𝑥)  ±  𝑣(𝑥) 𝑌 (𝑘)  =  𝑈(𝑘)  ±  𝑉 (𝑘) 

𝑦(𝑥)  =  𝑐𝑤(𝑥) 𝑌 (𝑘)  =  𝑐𝑊(𝑘) 

𝑦(𝑥)  =  𝑑𝑤/𝑑𝑥 𝑌 (𝑘)  =  (𝑘 +  1)𝑊(𝑘 +  1) 

𝑦(𝑥)  =  𝑑𝑗𝑤/𝑑𝑥𝑗 𝑌 (𝑘)  =  (𝑘 +  1)(𝑘 +  2)  ···  (𝑘 +  𝑗)𝑊(𝑘 +  𝑗) 

𝑦(𝑥)  =  𝑢(𝑥)𝑣(𝑥) 𝑌 (𝑘)  = , 𝑘 𝑈(𝑟)𝑉 (𝑘 −  𝑟) 

𝑦(𝑥)  =  𝑥𝑗 𝑌 (𝑘)  =  𝛿(𝑘 −  𝑗)  = {
1,   𝐾 = 𝑗

 
0 , 𝑘 ≠ 𝑗

 

 

In viable applications, particularly in computational arithmetic and building, the first 

work is frequently not communicated as an unbounded arrangement but or maybe as a 

limited arrangement estimation. This reflects the impediments of real-world computation, 

where boundless entireties are not attainable and truncation is fundamental for 

commonsense purposes. As such, the work is ordinarily spoken to by a limited number of 

terms that adequately surmised its behavior inside a wanted run of accuracy. In this 

setting, the initial work, which may depend on a physical variable such as time or space, 

is approximated by a limited whole of terms including powers of the autonomous variable 

and the comparing changed coefficients. This representation permits for a proficient and 

sensible way to analyze and compute arrangements to differential conditions[7]. 

  The choice with respect to how numerous terms to incorporate within the series is 

basic and is guided by the joining behavior of the arrangement. Particularly, within the 

scope of this consider, the truncation restrain is decided based on the meeting of the 

common recurrence. This implies that the arrangement is ended at a point where the extra 

terms have an immaterial impact on the exactness of the arrangement. The impact of 
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higher-order terms is considered insignificant when their commitment to the overall work 

gets to be exceptionally little. This methodology guarantees that the limited estimation 

holds the basic characteristics of the first work whereas lessening computational 

complexity.   Additionally, when managing with items of capacities within the system of 

the differential change strategy, the concept of convolution plays a central part[14]. 

 Concurring to the formal definition, in case a work is the item of two unique 

capacities, each of which can be represented by its individual converse change, at that 

point the change of their product is computed through a convolution operation. In other 

words, the item of two capacities within the physical space compares to a convolution of 

their changed representations within the change space[15]. 

 This rule gives a efficient run the show for dealing with nonlinear terms and 

intelligent between numerous capacities inside the differential change system.   

Convolution in this setting includes summing the items of sets of transformed coefficients 

from each function, where the indices of the sets are orchestrated to entirety up to the same 

esteem in each term of the result. This strategy captures how the diverse orders of the 

initial capacities combine to create modern terms within the item work.  

The convolution operation is principal for amplifying the differential change strategy 

to nonlinear differential conditions, where terms including items of capacities regularly 

emerge. By characterizing this operation clearly, the strategy gets to be more flexible and 

appropriate to a broader course of issues[16]. 

𝑦(𝑥) = ∑ 𝑥𝑘𝑦(𝑘)

𝑚

𝑘=0

                            (4) 

Equation (3) implies that ∑ 𝑥𝑘𝑦(𝑘)𝑚
𝑘=𝑚+1  is negligibly small. In fact, m is decided by 

the convergence of natural frequency in this study. 

Definition 2.1. 𝐼𝑓 𝑦(𝑥)  =  𝑢(𝑥)𝑣(𝑥), 𝑢(𝑥)  =  𝐷−1[𝑈(𝑘)], 𝑣(𝑥)  =  𝐷−1[𝑉 (𝑘)], and ⊗ 

denote convolution.  

Then,  [𝑦(𝑥)]  =  𝐷[𝑢(𝑥)𝑣(𝑥)]  =  𝑈(𝑘)  ⊗  𝑉 (𝑘)  = ∑ 𝑈𝑘
𝑟=0  (𝑟)𝑉 (𝑘 −  𝑟). 

3. Results and Discussion 

A. Pade´ Approximation 

Suppose that we are given a power series ∑ 𝑎𝑖𝑥
𝑖 ,∞

𝑖=0  representing a function f(x), so 

that 

𝑓(𝑥) = ∑ 𝑎𝑖𝑥
𝑖 ,

∞

𝑖=0

                      (3.1) 

A Pade´ approximation is a rational fraction 

[
𝐿

𝑀
] =

𝑝0 + 𝑝1 + ⋯ + 𝑃𝐿𝑥𝐿

𝑞0 + 𝑞1𝑥 + ⋯ + 𝑞𝑀𝑥𝑀′                       (3.2) 

In approximation theory, especially when making simple versions of complex 

functions, a common method used is the Padé approximation.  The Padé approximation 

tries to show a function as a simple fraction made of two polynomial expressions.  This 

estimate is important because it can show key features of a function with fewer parts than 

a usual power series.  An important part of the Padé approximation is that it creates a 

function that matches the original function's Maclaurin series as closely as it can, based on 

certain limits.  When we talk about the Padé approximation of a function, we look at a 

fraction where the top part is a polynomial with a degree of L and the bottom part is a 

polynomial with a degree of M[17]. 

These two polynomials are selected so that when you divide them, the result is the 

same as the original function's series expansion for the highest degree possible.  In this 

arrangement, the top part will have L plus one numbers, and the bottom part will have M 

plus one numbers.  There is extra information because both polynomials have a common 
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factor that doesn’t change the value of the rational function when it's applied to both.  To 

make this unclear situation clear and the definition specific, we usually follow a rule: we 

set the leading number of the denominator polynomial to one.  Making the first number in 

the bottom part of the equation equal to one isn't just for ease; it's important for correctly 

creating the Padé approximation.  By doing this, we set a scale and prevent endless options 

that come from changing the size of the rational function randomly.  So, the total number 

of unknowns in the system becomes easier to handle.  Basically, the approximation 

includes L plus one separate numbers from the top part and M separate numbers from the 

bottom part, since the main part has already been set[18]. 

In total, there are L plus M plus one unknown number that need to be figured out to 

fully define the rational function.  The number of unknown coefficients tells us how 

accurately the Padé approximant can represent the original power series.  With L plus M 

plus one coefficient, the rational function can usually match the original power series up 

to the L plus M term[19]. 

 This means that the approximation will match the original function’s series 

expansion starting from the constant term, then the linear term, the quadratic term, and so 

on, all the way up to the term with the power raised to L plus M.  This matching makes 

sure that the Padé approximation closely follows the original function at the beginning.  

This is especially useful for approximating functions that have sharp changes or are not 

simple polynomials, where Taylor expansions wouldn't work well enough.  So, deciding 

to keep the first number in the bottom part fixed and balancing the levels of the top and 

bottom parts is not random; these choices are essential for building and making the Padé 

approximation work well.  This organized method results in a mathematical function that 

matches the original series to a certain level.  It often provides better accuracy and works 

better than using simple polynomial equations of the same level[20]. 

∑ 𝑎𝑖𝑥𝑖

∞

𝑖=0

=
𝑝0 + 𝑝1 + ⋯ + 𝑃𝐿𝑥𝐿

𝑞0 + 𝑞1𝑥 + ⋯ + 𝑞𝑀𝑥𝑀′                       (3.3) 

Multiply both sides of (3.3) by the denominator of right side in (3.3), and compare 

the coefficients of both sides of (3.3), then we have 

𝑎𝑙 + ∑ 𝑎𝑙−𝑘𝑞𝑘

𝑚

𝑘=1

= 𝑝𝑙 ,        (𝑙 = 0 , … , 𝑀)                      (3.4) 

𝑎𝑙 + ∑ 𝑎𝑙−𝑘𝑞𝑘

𝐿

𝑘=1

= 0,       (𝑙 = 𝑀 + 1 , … , 𝑀 + 𝐿)                      (3.5) 

After solving (3.5)'s linear equation, we obtain qk (k = 1,..., L). After entering qk into 

(3.4), we obtain p1(l = 0,..., M). A [L/M] Pade´ approximation that coincides with∑ 𝑎𝑖𝑥
𝑖∞

𝑖=0  

through order 𝑥𝐿+𝑀 has thus been built. The Pade´ series provides an A-stable formula for 

an ordinary diHerential equation if M < L ≤ M + 2, where M and L are the degrees of the 

numerator and denominator, respectively[21]. 

B. Numerical Examples 

Example 4.1 (see Table 2 and Figure 1). 

𝑢′′(𝑥) +
2

𝑥
 𝑢′(𝑥) =  2(2𝑥2 + 3) 𝑢(𝑥), 0 ≤  𝑥 ≤  1,     

𝑢(0) =  1,            𝑢′(0) =  0   ,               (4.1) 

where 𝑢(𝑥)  =  𝑒𝑥2
 is the precise solution. By multiplying (4.1) by x on both sides, 

𝑥𝑢′′(𝑥) +  2𝑢′(𝑥) =  4𝑥3𝑢(𝑥) +  6𝑥𝑢(𝑥),      0 ≤  𝑥 ≤  1.                 (4.2) 

By using the fundamental operations of one-dimensional diHerential transform 

method in Table 1, we obtained following recurrence relation: [22] 

𝛿(𝑘 −  1) ⊗  (𝑘 +  1)(𝑘 +  2)𝑈(𝑘 +  2) +  2(𝑘 +  1)𝑈(𝑘 +  1) 

=  4𝛿(𝑘 −  3) ⊗  𝑈(𝑘) +  6𝛿(𝑘 −  1) ⊗  𝑈(𝑘).       (4.3) 
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Discrete Dynamics in Nature and Society 

Table 2. Numerical solution of u(x). 

x u(x) P [5/4] |𝒖(𝒙)  −  𝑷 [𝟓/𝟒]| 

0.1 1.010050167 1.010050167 0 

0.2 1.040810774 1.040810774 0 

0.3 1.094174234 1.094174275 4.1 × 10−8 

0.4 1.173509974 1.173510700 7.26 × 10−7 

0.5 1.284016927 1.284023668 0.000006741 

0.6 1.433275840 1.43317285 0.000041445 

0.7 1.632060167 1.632251266 0.000191099 

0.8 1.895481174 1.896191187 0.000710013 

0.9 2.244559634 2.246777235 0.002217601 

1.0 2.708333334 2.714285714 0.005952380 

 

 

Figure 1. Values of u(x) and its P [5/4] Pade´ approximant. Then, 

 

∑ 𝛿(𝑙 − 1)(𝑘 − 𝑙 + 1)(𝑘 − 𝑙 + 2)𝑈(𝑘 − 𝑙 + 2)  +  2(𝑘 + 1)𝑈(𝑘 + 1)

𝑘

𝑙=0

 

4 ∑ 𝛿(𝑙 − 3)𝑈(𝑘 −  𝑙)

𝑘

𝑙=0

+ 4 ∑ 6𝛿(𝑙 − 1)𝑈(𝑘 − 1)

𝑘

𝑙=0
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𝑈(0) =  1,    𝑈(1) = 0,    𝑈(2) = 1, 𝑈(3) = 0, 𝑈(4) =
1

2
,     𝑈(5) = 0, 

𝑈(6) =
1

6
,      𝑈(7) =  0,     𝑈(8) =

1

24
,        𝑈(9)  =  0, . . . , 

𝑢∗(𝑥)  =  𝑈(0)  +  𝑥𝑈(1)  + 𝑥2𝑈(2)  +  𝑥3𝑈(3) + . . .,  

𝑢∗(𝑥) =  1 + 𝑥2  +
1

2
 𝑥4 +

1

6
𝑥6 +

1

24
𝑥8 . . . = 1 + 𝑥2 +

1

2
𝑥4 +

1

3!
𝑥6 +

1

4!
𝑥8 + ⋯ +

1

𝑛!
𝑥2𝑛       (4.4)  
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Power series 𝑢∗(𝑥)can be transformed into Pade´ series 

𝑝 [
4

5
] =

(1 + (
1
2

) 𝑥2 + (
1

12
) 𝑥4)

(1 + (
1
2

) 𝑥2 + (
1

12
) 𝑥4)

 

=
(1 + 0.5𝑥2 + 0.8333333333𝑥4)

(1 + 0.5𝑥2 + 0.8333333333𝑥4)
           (4.5) 

Example 4.2 (see Table 3 and Figure 2). Consider the Lane-Emden-type equation 

𝑦′′ +
2

𝑥
𝑦′ + (+ 8𝑒𝑦 + 4𝑒𝑦/2) =  0,          (4.6) 

with initial values 

𝑦(0) = 0,           𝑦(0) = 0,          (4.7)   

where the exact solution is 𝑦(𝑥)  =  −2 𝑙𝑛(1 + 𝑥2).  

Multiplying both sides of equation by 𝑥, 

𝑥𝑦′′ +  2𝑦′ +  8𝑥𝑒𝑦  +  4𝑥𝑒𝑦/2  =  0.              (4.8) 

Also, 𝑒𝑦 and 𝑒𝑦/2 are defined as follows: 

𝑒𝑦  =  1 +  𝑦,           𝑒𝑦/2 =  1 +
𝑦

2
.                        (4.9) 

Then, 

𝑥𝑦′′ +  2𝑦′ +  12𝑥 +  10𝑥𝑦 =  0.                         (4.10) 

 

By using the fundamental operations of one-dimensional diHerential transform 

method in Table 1, we obtain the following recurrence relation[22]: 

 

𝛿(𝑘 −  1) ⊗  (𝑘 + 1)(𝑘 + 2)𝑌 (𝑘 + 2) +  2(𝑘 + 1)𝑌 (𝑘 + 1) +  12𝛿(𝑘 − 1) +  10𝛿(𝑘 − 1)

⊗  𝑌 (𝑘) =  0.                 (4.11) 

Discrete Dynamics in Nature and Society 

Table 3. Numerical solution of y(x). 

x y(x) P [5/4] |𝒚(𝒙)  −  𝑷 [𝟓/𝟒]| 

0.1 −0.01990023712 −0.01990023713 1 × 10−11 

0.2 −0.07841498810 −0.07841499080 2.70 × 10−9 

0.3 −0.1720671642 −0.1720673162 1.520 × 10−7 

0.4 −0.2953112381 −0.2953138699 0.0000026318 

0.5 −0.4408387684 −0.4408625091 0.0000237407 

0.6 −0.5998683214 −0.6000097952 0.0001414738 

0.7 −0.7622819782 −0.7629141475 0.0006321693 

0.8 −0.9164312381 −0.9187160286 0.0022847905 

0.9 −1.048395758 −1.055408536 0.007012778 
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Figure 2.Values of y(x) and its P [5/4] Pade´ approximant. 

 

Then, 

∑ 𝛿(𝑙 − 1)(𝑘 − 𝑙 + 1)(𝑘 − 𝑙 + 2)𝑌 (𝑘 − 𝑙 + 2)  +  2(𝑘 + 1)𝑌 (𝑘 + 1)  +  12𝛿(𝑘 − 1)

𝑘

𝑙=0

 

+10 ∑ 𝛿(𝑙 − 1)𝑦(𝑘 − 𝑙) = 0

𝑘

𝑙=0

 

𝑦(0) =  0,     𝑦(1) =  0,    𝑦(2) =  −2,     𝑦(3) =  0,    𝑦(4) =  1,   𝑦(5)  =  0, 
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𝑦(6)  =  −
5

21
 , 𝑦(7)  =  0, 𝑦(8)  =

25

756
, . . . , 

𝑦 ∗ (𝑥)  =  𝑦(0)  +  𝑥𝑦(1)  +  𝑥2𝑦(2)  + 𝑥3𝑦(3) + . . . , 

𝑦 ∗ (𝑥) =  −2𝑥2  +  𝑥4  −
5

21
 𝑥6 +

25

756
𝑥8 + . . . .               (4.12) 

Power series y∗(x)can be transformed into Pade´ series 

 

𝑝 [
5

4
] =

((589/704)𝑥4 − 2𝑥4)

(1 + (115/1408)𝑥2 + (4625/59136)𝑥4)
 

=
(0.8366477273𝑥4−2𝑥4)

(1+0.08167613636𝑥2 − 0.07820955087𝑥4)
              (4.13)  

4. Conclusion 

This study suggests using a Padé approximation method as a trustworthy and 

effective way to solve Lane-Emden type differential equations.  These equations are a type 

of nonlinear, second-order ordinary differential equations that often appear in 

astrophysics.  They are commonly used to model the structure of stars, the heat behavior 

of round gas clouds, and gas spheres at a constant temperature.  Because of their unique 

behavior at the starting point and their complex nature, it is usually very difficult to find 

exact solutions for Lane-Emden equations.  Traditional math methods can be very slow to 

compute or have problems getting close to tricky points.  The Padé approximation gives a 

useful and very accurate option.  The main idea of the Padé approximation method is to 
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represent a function as a fraction of two polynomials.  This helps to describe complicated 

functions better and more effectively than regular power series expansions.  In this case, 

the differential transform method is used to change the original Lane-Emden equation into 

a group of algebraic equations[23]. 

 From there, we get a shortened series solution that estimates the answer near the 

starting point.  This shortened series is then used to create the Padé approximant.  Unlike 

Taylor or Maclaurin series that can become inaccurate after just a few terms, the Padé 

approximant is better at staying accurate over a larger range and can successfully 

approximate solutions that have poles or unusual behavior.  A big benefit seen in this 

study is how easy it is to use the Padé approximation.  The process uses simple math 

operations, and the resulting function is very similar to the real solution.  This efficiency 

makes it especially good for Lane-Emden equations because it quickly gets close to the 

important point.  Additionally, the Padé approximant not only describes the behavior close 

to the starting point but also allows for more accurate results at larger values of the 

independent variable[10]. 

This is an advantage over methods that rely solely on series.  The numbers we got 

from using the suggested method show clearly that it is accurate and dependable.  The 

calculated results match well with the exact solutions or reference solutions that are 

already published.  This shows that the Padé approximation can give very accurate results 

using fewer parts than regular methods.  It cuts down on computing expenses while 

keeping accuracy, making it great for real-world uses in physics and engineering.  In 

summary, the Padé approximation method shown in this study is a strong, easy, and 

useful way to solve Lane-Emden type differential equations.  It can deal with difficult 

problems, work faster, and give good results without using a lot of computer power, 

making it better than traditional methods.  Since it has been successful in this area, the 

method could be very useful for solving more types of nonlinear differential equations in 

various scientific fields[24]. 
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