

CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES

https://cajmtcs.centralasianstudies.org

Volume: 03 Issue: 12 | Dec 2022 ISSN: 2660-5309

ИССЛЕДОВАНИЕ РАЗМНОЖАЮЩИХ СВОЙСТВ ЯЧЕЕК ВВЭР С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ ЯДЕРНОГО ТОПЛИВА

Косимов Асрориддин Садиевич

Заведующей кафедры общий физики Термезский Государственный университет кандидат химически наук, доцент

Мухаммадиев Бехруз Хафизович

Преподаватель кафедры общий физики

Аннотация

Целью данной работы является проведение анализа свойств ячеек ВВЭР при повышенных содержаниях ядерного топлива, используя программу GETERA-93. Задачами данной работы являются следующие:

- 1. Расчёт выгорания топливо с 2, 3 и 4 перегрузками с центральным отверстием при обогащениях топлива 4,4% и 5%.
- 2. Расчёт выгорания топливо с 2, 3 и 4 перегрузками с повышенным содержанием топлива при обогащениях топлива 4,4% и 5%.
- 3. Анализ изменения концентраций изотопов 235U, 239Pu, 240Pu, 241Pu при выгораниях топлива с центральным отверстием и без центрального отверстия при обогащениях топлива 4,4% и 5%..

© 2019 Hosting by Central Asian Studies. All rights reserved.

ARTICLEINFO

Article history: Received 6 Oct 2022 Revised form 5 Nov 2022 Accepted 22 Dec 2022

Ключевые слова: GETERA-93, ВВЭР (водо-водяной энергетический реактор), ТВЭЛ (тепловыделяющий элемент), АЭС - атомная электрическая станция, МАГАТЭ (международное агентство по атомной энергии), ТВС (тепловыделяющая сборка). САОЗ - системы аварийного охлаждения зоны. WIMSD4 - The Winfrith Improved Multigroup Scheme (WIMS) code in version D4.

На сегодняшний день практически достигнуты граничные значения параметров: почти 5% обогащения по урану-235, использованы все возможности по увеличению высоты топливного столба, максимально снижен диаметр центрального отверстия в топливной таблетке (в некоторых модификациях ТВС отверстие в таблетке отсутствует).

Для проведения нейтронно-физического расчета была использована программа GETERA. Программа GETERA предназначена для нейтронно-физического расчета ячеек и поли ячеек ядерных реакторов, как быстрых, так и тепловых, в сферической, цилиндрической и плоской геометрии.

ВВЭР — водо-водяной корпусной энергетический ядерный реактор с водой под давлением, представитель одной из наиболее удачных ветвей развития ядерных энергетических установок, получивших широкое распространение в мире. Общее название реакторов этого типа в других странах — PWR, они являются основой мировой мирной ядерной энергетики[1].

© 2022, CAJMTCS

CENTRAL ASIAN STUDIES www.centralasianstudies.org

Тепловыделяющая сборка реактора BBЭР-1000 представляет собой активную конструкцию из 312 твэлов, 18 направляющих каналов, 15 – 12 дистанционирующих и одной нижней решеток[2].

Уран в качестве основного ядерного топлива

Уран является относительно распространенным элементом, который встречается во всем мире. Он добывается в ряде стран и должен быть переработан, прежде чем его можно будет использовать в качестве ядерного топлива и использования энергии ядерной реакции [2].

Уран-235 используется в качестве источника энергии в различных концентрациях. Некоторые реакторы, такие как тяжеловодный водо-водяной, могут использовать природный уран с концентрацией урана-235 всего 0,7%, в то время как другие реакторы требуют более значительного обогащения урана до уровней от 3% до 5%.

Один из важнейших показателей экономичности ядерного реактора, атомной электростанции и ядерного топливного цикла в целом является **глубина выгорания ядерного топлива**. **Глубина выгорания ядерного топлива** — это количество энергии, полученной за все время эксплуатации ядерного топлива в активной зоне (за кампанию ядерного топлива), на единицу массы загруженного ядерного топлива. Чаще всего при определении экономичности ЯТЦ оперируют средней глубиной выгорания (В), которая может называться удельным энерговыделением [4].

Ниже представлена топливная сборка с ее характерными размерами. Конфигурация реактора ВВЭР – 1000 реакторной ячейки, охлаждаемой водой, имеет следующе параметры: радиус ячейки 5 мм, топливо - UO_2 с обогащением 4,4% и 5%, материал оболочки — цирконий (0,715 г/см³), замедлитель — вода плотностью 0,715 г/см³. Граничные условия представляют собой полное отражение нейтронов на границе ячейки.

1. Расчёт выгорания топливо с 2, 3 и 4 перегрузками с центральным отверстием при обогащениях топлива 4,4% и 5%.

В показанном файле мы можем найти значения коэффициента размножения K_{inf} , коэффициенты формулы четырех факторов, среднее сгоревшего проявленного с шагом 50 дней, кроме того, мы получаем изотопные составы всех нуклидов в каждой последовательности.

В этот период мы проведем анализ свойств воспроизведения нейтронов, поэтому мы получили значения K_{inf} для каждого временного шага, а также изотопный состав ядер ^{235}U , ^{239}Pu , ^{240}Pu , которые ранее интересовали нас описанными свойствами.

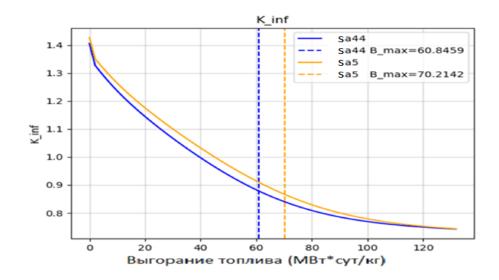


Рис. 1: Зависимость коэффициента размножения \mathbf{K}_{inf} нейтронов на основе среднего выгорания топлива

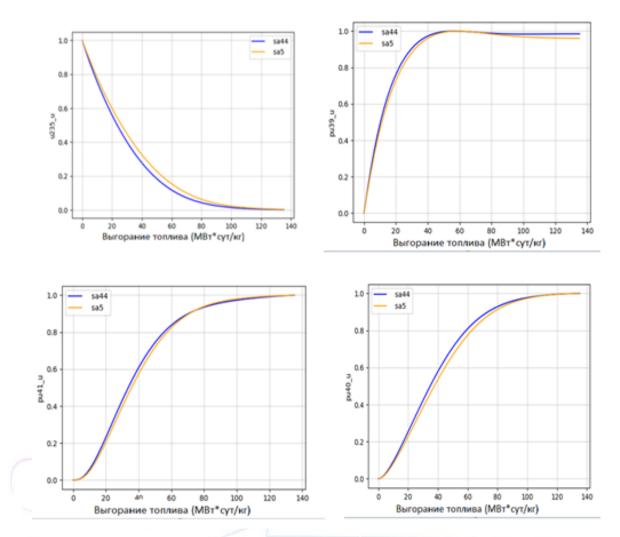


Рис. 2. Относительное поведение изотопных концентраций изотоп ^{235}U ^{239}Pu ^{240}Pu ^{241}Pu , в зависимости от сгорания топлива.

Для обогащения 4,4%			
	Время в днях	глубина выгорания	
Две перегрузки	1224	54,0853	
Три перегрузки	1378	60,8459	
Четыре перегрузки	1471	64,9023	
Для обогащения 5%			
	Время в днях	глубина выгорания	
Две перегрузки	1414	62,4126	
Три перегрузки	1592	70,2142	
Четыре перегрузки	1699	74,8951	

Таблица 1: Глубина выгорание с 2, 3 и 4 перегрузками для обогащения 4,4% и 5%.

2. Расчёт выгорания топливо с 2, 3 и 4 перегрузками с повышенным содержанием топлива при обогащениях топлива 4,4% и 5%.

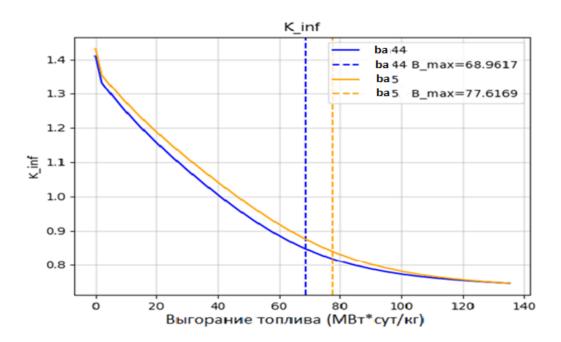


Рис. 3: Зависимость коэффициента размножения K_{inf} нейтронов на основе среднего выгорания топлива

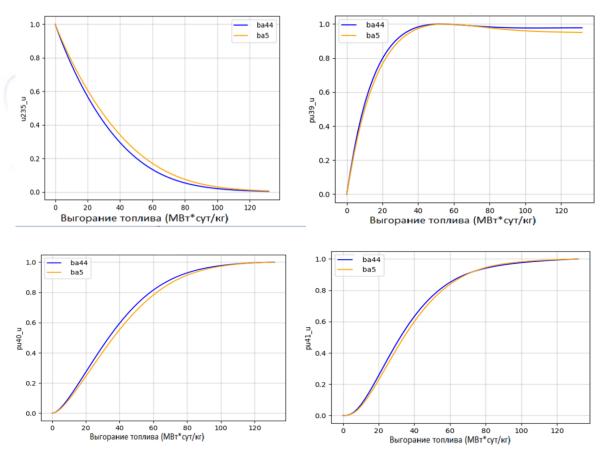


Рис. 4. Относительное поведение изотопных концентраций изотоп ^{235}U ^{239}Pu ^{240}Pu ^{241}Pu , в зависимости от сгорания топлива.

Для обогащения 4,4%		
	Время в днях	глубина выгорания
Две перегрузки	1354	61,2993
Три перегрузки	1524	68,9617
Четыре перегрузки	1626	73,5591
Для обогащения 5%		
	Время в днях	глубина выгорания
Две перегрузки	1525	68,9928
Три перегрузки	1717	77,6169
Четыре перегрузки	1832	82,7914

Таблица 2: Глубина выгорание с 2, 3 и 4 перегрузками с повышенным содержанием топлива.

Из рисунка 1 и 3 можно сказать, что в начале новое топливо имеет скорость размножения 1,40575 и 1,42699, а когда она начинает сжигать ядерное топлива, оно уменьшается (количество расщепляющихся изотопных листов вследствие реакций деления происходит внутри ядра).

Анализ проведенных расчётов показывает увеличение глубины выгорания при росте обогащения с 4,4% до 5% и при росте количества топливо (с центральным отверстием и без центрального отверстия).

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. http://elib.biblioatom.ru/text/atomnaya-energiya_t74-1_1993/go,10/.
- 2. https://www.atomic-energy.ru/smi/2017/03/15/73650.
- 3. https://ozlib.com/808926/tehnika/vygoranie_yadernogo_topliva.
- 4. https://helpiks.org/6-5263.html.
- 5. https://www.rosatom.ru/production/design/sovremennye-reaktory-rossiyskogo-dizayna/.